Announcement

Collapse
No announcement yet.

Biosens Bioelectron . Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Biosens Bioelectron . Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen


    Biosens Bioelectron


    . 2020 Nov 13;173:112817.
    doi: 10.1016/j.bios.2020.112817. Online ahead of print.
    Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen


    Dan Liu 1 , Chenhui Ju 1 , Chao Han 2 , Rui Shi 3 , Xuehui Chen 1 , Demin Duan 1 , Jinghua Yan 4 , Xiyun Yan 5



    Affiliations

    Abstract

    COVID-19 has evolved into a global pandemic. Early and rapid detection is crucial to control of the SARS-CoV-2 transmission. While representing the gold standard for early diagnosis, nucleic acid tests for SARS-CoV-2 are often complicated and time-consuming. Serological rapid antibody tests are characterized by high rates of false-negative diagnoses, especially during early infection. Here, we developed a novel nanozyme-based chemiluminescence paper assay for rapid and sensitive detection of SARS-CoV-2 spike antigen, which integrates nanozyme and enzymatic chemiluminescence immunoassay with the lateral flow strip. The core of our paper test is a robust Co-Fe@hemin-peroxidase nanozyme that catalyzes chemiluminescence comparable with natural peroxidase HRP and thus amplifies immune reaction signal. The detection limit for recombinant spike antigen of SARS-CoV-2 was 0.1 ng/mL, with a linear range of 0.2-100 ng/mL. Moreover, the sensitivity of test for pseudovirus could reach 360 TCID50/mL, which was comparable with ELISA method. The strip recognized SARS-CoV-2 antigen specifically, and there was no cross reaction with other coronaviruses or influenza A subtypes. This testing can be completed within 16 min, much shorter compared to the usual 1-2 h required for currently used nucleic acid tests. Furthermore, signal detection is feasible using the camera of a standard smartphone. Ingredients for nanozyme synthesis are simple and readily available, considerably lowering the overall cost. In conclusion, our paper test provides a high-sensitive point-of-care testing (POCT) approach for SARS-CoV-2 antigen detection, which should greatly facilitate early screening of SARS-CoV-2 infections, and considerably lower the financial burden on national healthcare resources.

    Keywords: Antigen detection; Chemiluminescence; Nanozyme; Paper test; SARS-CoV-2.

Working...
X