Announcement

Collapse
No announcement yet.

PLoS Pathog . Single Cell Heterogeneity in Influenza A Virus Gene Expression Shapes the Innate Antiviral Response to Infection

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PLoS Pathog . Single Cell Heterogeneity in Influenza A Virus Gene Expression Shapes the Innate Antiviral Response to Infection


    PLoS Pathog


    . 2020 Jul 2;16(7):e1008671.
    doi: 10.1371/journal.ppat.1008671. Online ahead of print.
    Single Cell Heterogeneity in Influenza A Virus Gene Expression Shapes the Innate Antiviral Response to Infection


    Jiayi Sun 1 , J Cristobal Vera 1 2 , Jenny Drnevich 3 , Yen Ting Lin 4 , Ruian Ke 4 , Christopher B Brooke 1 2



    AffiliationsFree article

    Abstract

    Viral infection outcomes are governed by the complex and dynamic interplay between the infecting virus population and the host response. It is increasingly clear that both viral and host cell populations are highly heterogeneous, but little is known about how this heterogeneity influences infection dynamics or viral pathogenicity. To dissect the interactions between influenza A virus (IAV) and host cell heterogeneity, we examined the combined host and viral transcriptomes of thousands of individual cells, each infected with a single IAV virion. We observed complex patterns of viral gene expression and the existence of multiple distinct host transcriptional responses to infection at the single cell level. We show that human H1N1 and H3N2 strains differ significantly in patterns of both viral and host anti-viral gene transcriptional heterogeneity at the single cell level. Our analyses also reveal that semi-infectious particles that fail to express the viral NS can play a dominant role in triggering the innate anti-viral response to infection. Altogether, these data reveal how patterns of viral population heterogeneity can serve as a major determinant of antiviral gene activation.


Working...
X