Announcement

Collapse
No announcement yet.

PLoS Negl Trop Dis: Undiscovered Bat Hosts of Filoviruses

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PLoS Negl Trop Dis: Undiscovered Bat Hosts of Filoviruses

    Citation: Han BA, Schmidt JP, Alexander LW, Bowden SE, Hayman DTS, Drake JM (2016) Undiscovered Bat Hosts of Filoviruses. PLoS Negl Trop Dis 10(7): e0004815. doi:10.1371/journal.pntd.0004815
    Abstract

    Ebola and other filoviruses pose significant public health and conservation threats by causing high mortality in primates, including humans. Preventing future outbreaks of ebolavirus depends on identifying wildlife reservoirs, but extraordinarily high biodiversity of potential hosts in temporally dynamic environments of equatorial Africa contributes to sporadic, unpredictable outbreaks that have hampered efforts to identify wild reservoirs for nearly 40 years. Using a machine learning algorithm, generalized boosted regression, we characterize potential filovirus-positive bat species with estimated 87% accuracy. Our model produces two specific outputs with immediate utility for guiding filovirus surveillance in the wild. First, we report a profile of intrinsic traits that discriminates hosts from non-hosts, providing a biological caricature of a filovirus-positive bat species. This profile emphasizes traits describing adult and neonate body sizes and rates of reproductive fitness, as well as species? geographic range overlap with regions of high mammalian diversity. Second, we identify several bat species ranked most likely to be filovirus-positive on the basis of intrinsic trait similarity with known filovirus-positive bats. New bat species predicted to be positive for filoviruses are widely distributed outside of equatorial Africa, with a majority of species overlapping in Southeast Asia. Taken together, these results spotlight several potential host species and geographical regions as high-probability targets for future filovirus surveillance.
    Author Summary

    Preventing future outbreaks of ebolaviruses in humans and other vulnerable animal populations will require identifying the natural reservoirs of filoviruses. Accumulating indirect evidence points to certain bat species as prime suspects. To guide the search for natural filovirus reservoirs, we mined intrinsic biological data on the world?s bat species to determine what features best predict filovirus hosts compared to bats at large. We report a suite of traits that distinguishes seropositive bat species from all others with an estimated 87% accuracy. We also identify several bat species not currently known to be filovirus hosts whose trait profiles indicate should be surveillance targets. Geographic regions where numerous potential filovirus hosts co-occur (potential filovirus hotspots) suggest that filovirus distribution and diversity may be greater than previously thought.

    full article

    Author Summary Preventing future outbreaks of ebolaviruses in humans and other vulnerable animal populations will require identifying the natural reservoirs of filoviruses. Accumulating indirect evidence points to certain bat species as prime suspects. To guide the search for natural filovirus reservoirs, we mined intrinsic biological data on the world’s bat species to determine what features best predict filovirus hosts compared to bats at large. We report a suite of traits that distinguishes seropositive bat species from all others with an estimated 87% accuracy. We also identify several bat species not currently known to be filovirus hosts whose trait profiles indicate should be surveillance targets. Geographic regions where numerous potential filovirus hosts co-occur (potential filovirus hotspots) suggest that filovirus distribution and diversity may be greater than previously thought.


Working...
X