Announcement

Collapse
No announcement yet.

Highly specific and rapid glycan based amperometric detection of influenza viruses

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Highly specific and rapid glycan based amperometric detection of influenza viruses

    Chem Sci. 2017 May 1;8(5):3628-3634. doi: 10.1039/c6sc03720h. Epub 2017 Feb 14.
    Highly specific and rapid glycan based amperometric detection of influenza viruses.

    Cui X1, Das A1, Dhawane AN1, Sweeney J1, Zhang X1, Chivukula V2, Iyer SS1.
    Author information

    Abstract

    Rapid and precise detection of influenza viruses in a point of care setting is critical for applying appropriate countermeasures. Current methods such as nucleic acid or antibody based techniques are expensive or suffer from low sensitivity, respectively. We have developed an assay that uses glucose test strips and a handheld potentiostat to detect the influenza virus with high specificity. Influenza surface glycoprotein neuraminidase (NA), but not bacterial NA, cleaved galactose bearing substrates, 4,7di-OMe N-acetylneuraminic acid attached to the 3 or 6 position of galactose, to release galactose. In contrast, viral and bacterial NA cleaved the natural substrate, N-acetylneuraminic acid attached to the 3 or 6 position of galactose. The released galactose was detected amperometrically using a handheld potentiostat and dehydrogenase bearing glucose test strips. The specificity for influenza was confirmed using influenza strains and different respiratory pathogens that include Streptococcus pneumoniae and Haemophilus influenzae; bacteria do not cleave these molecules. The assay was also used to detect co-infections caused by influenza and bacterial NA. Viral drug susceptibility and testing with human clinical samples was successful in 15 minutes, indicating that this assay could be used to rapidly detect influenza viruses at primary care or resource poor settings using ubiquitous glucose meters.


    PMID: 28580101 PMCID: PMC5437373 DOI: 10.1039/c6sc03720h
Working...
X