Announcement

Collapse
No announcement yet.

Adaptive Mutations in Influenza A/California/07/2009 Enhance Polymerase Activity and Infectious Virion Production

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Adaptive Mutations in Influenza A/California/07/2009 Enhance Polymerase Activity and Infectious Virion Production

    Viruses. 2018 May 18;10(5). pii: E272. doi: 10.3390/v10050272.
    Adaptive Mutations in Influenza A/California/07/2009 Enhance Polymerase Activity and Infectious Virion Production.

    Slaine PD1, MacRae C2, Kleer M3, Lamoureux E4, McAlpine S5, Warhuus M6, Comeau AM7, McCormick C8, Hatchette T9, Khaperskyy DA10.
    Author information

    Abstract

    Mice are not natural hosts for influenza A viruses (IAVs), but they are useful models for studying antiviral immune responses and pathogenesis. Serial passage of IAV in mice invariably causes the emergence of adaptive mutations and increased virulence. Here, we report the adaptation of IAV reference strain A/California/07/2009(H1N1) (also known as CA/07) in outbred Swiss Webster mice. Serial passage led to increased virulence and lung titers, and dissemination of the virus to brains. We adapted a deep-sequencing protocol to identify and enumerate adaptive mutations across all genome segments. Among mutations that emerged during mouse-adaptation, we focused on amino acid substitutions in polymerase subunits: polymerase basic-1 (PB1) T156A and F740L and polymerase acidic (PA) E349G. These mutations were evaluated singly and in combination in minigenome replicon assays, which revealed that PA E349G increased polymerase activity. By selectively engineering three PB1 and PA mutations into the parental CA/07 strain, we demonstrated that these mutations in polymerase subunits decreased the production of defective viral genome segments with internal deletions and dramatically increased the release of infectious virions from mouse cells. Together, these findings increase our understanding of the contribution of polymerase subunits to successful host adaptation.


    KEYWORDS:

    H1N1; PA; PB1; deep sequencing; defective viral genomes; influenza; mouse adaptation; polymerase

    PMID: 29783694 DOI: 10.3390/v10050272
Working...
X