Announcement

Collapse
No announcement yet.

Synergistic Adaptive Mutations in the Hemagglutinin and Polymerase Acidic Protein Lead to Increased Virulence of Pandemic 2009 H1N1 Influenza A Virus in Mice

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Synergistic Adaptive Mutations in the Hemagglutinin and Polymerase Acidic Protein Lead to Increased Virulence of Pandemic 2009 H1N1 Influenza A Virus in Mice

    J Infect Dis. 2011 Nov 18. [Epub ahead of print]
    Synergistic Adaptive Mutations in the Hemagglutinin and Polymerase Acidic Protein Lead to Increased Virulence of Pandemic 2009 H1N1 Influenza A Virus in Mice.
    Seyer R, Hrincius ER, Ritzel D, Abt M, Mellmann A, Marjuki H, K?hn J, Wolff T, Ludwig S, Ehrhardt C.
    Source

    Institute of Molecular Virology, ZMBE, Muenster.
    Abstract

    Influenza impressively reflects the paradigm of a viral disease in which continued evolution of the virus is of paramount importance for annual epidemics and occasional pandemics in humans. Because of the continuous threat of novel influenza outbreaks, it is essential to gather further knowledge about viral pathogenicity determinants. Here, we explored the adaptive potential of the influenza A virus subtype H1N1 variant isolate A/Hamburg/04/09 (HH/04) by sequential passaging in mice lungs. Three passages in mice lungs were sufficient to dramatically enhance pathogenicity of HH/04. Sequence analysis identified 4 nonsynonymous mutations in the third passage virus. Using reverse genetics, 3 synergistically acting mutations were defined as pathogenicity determinants, comprising 2 mutations in the hemagglutinin (HA[D222G] and HA[K163E]), whereby the HA(D222G) mutation was shown to determine receptor binding specificity and the polymerase acidic (PA) protein F35L mutation increasing polymerase activity. In conclusion, synergistic action of all 3 mutations results in a mice lethal pandemic H1N1 virus.

    PMID:
    22102733
    [PubMed - as supplied by publisher]

    Influenza impressively reflects the paradigm of a viral disease in which continued evolution of the virus is of paramount importance for annual epidemics and occasional pandemics in humans. Because of the continuous threat of novel influenza outbreaks, it is essential to gather further knowledge abo …
Working...
X