TL;DR estimate R0 of 5.7 for Covid-19 absent interventions.
Assuming the travel rate to the selected countries and regions is constant over the study period, we found that the epidemic was doubling in size every 2.9 days (95% credible interval [CrI], 2 days--4.1 days). Using previously reported serial interval for 2019-nCoV, the estimated basic reproduction number is 5.7 (95% CrI, 3.4--9.2). The estimates did not change substantially if we assumed the travel rate doubled in the last 3 days before January 23, when we used previously reported incubation interval for severe acute respiratory syndrome (SARS), or when we changed the hyperparameters in our prior specification. Conclusions: Our estimated epidemiological parameters are higher than an earlier report using confirmed cases in Wuhan. This indicates the 2019-nCoV could have been spreading faster than previous estimates.
Assuming the travel rate to the selected countries and regions is constant over the study period, we found that the epidemic was doubling in size every 2.9 days (95% credible interval [CrI], 2 days--4.1 days). Using previously reported serial interval for 2019-nCoV, the estimated basic reproduction number is 5.7 (95% CrI, 3.4--9.2). The estimates did not change substantially if we assumed the travel rate doubled in the last 3 days before January 23, when we used previously reported incubation interval for severe acute respiratory syndrome (SARS), or when we changed the hyperparameters in our prior specification. Conclusions: Our estimated epidemiological parameters are higher than an earlier report using confirmed cases in Wuhan. This indicates the 2019-nCoV could have been spreading faster than previous estimates.