Announcement

Collapse
No announcement yet.

Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir - Nature

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir - Nature

    We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

    Published: 09 November 2022

    DOI https://doi.org/10.1038/s41586-022-05514-2

    Sho Iketani, Hiroshi Mohri, Bruce Culbertson, Seo Jung Hong, Yinkai Duan, Maria I. Luck, Medini K. Annavajhala, Yicheng Guo, Zizhang Sheng, Anne-Catrin Uhlemann, Stephen P. Goff, Yosef Sabo, Haitao Yang, Alejandro Chavez & David D. Ho

    Abstract

    Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful against COVID-191,2. However, as SARS-CoV-2 has evolved to become resistant to other therapeutic modalities3-9, there is a concern that the same could occur for nirmatrelvir. Here, we have examined this possibility by in vitro passaging of SARS-CoV-2 in nirmatrelvir using two independent approaches, including one on a large scale. Indeed, highly resistant viruses emerged from both, and their sequences revealed a multitude of 3CL protease mutations. In the experiment done with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Yet, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L, or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones showed that these mutations only mediated low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (~100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro, and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next generation protease inhibitors.



Working...
X