<TABLE width="100%" xmlns="http://www.w3.org/1999/xhtml"><TBODY><TR><TD>Lancet Neurology 2005; 4:827-840
DOI:10.1016/S1474-4422(05)70247-7
Pathogenesis, clinical features, and neurological outcome of cerebral malaria
Dr Richard IdroMMED a b c , Neil E JenkinsMRCP a d and Charles RJC NewtonMD a e
Summary
Introduction
Epidemiology and immunity
Clinical features of cerebral malaria
Diagnosis
Pathogenesis
Outcome of cerebral malaria
Management of cerebral malaria
Areas for research
Search strategy and selection criteria
References
Summary
Cerebral malaria is the most severe neurological complication of Plasmodium falciparum malaria. Even though this type of malaria is most common in children living in sub-Saharan Africa, it should be considered in anybody with impaired consciousness that has recently travelled in a malaria-endemic area. Cerebral malaria has few specific features, but there are differences in clinical presentation between African children and non-immune adults. Subsequent neurological impairments are also most common and severe in children. Sequestration of infected erythrocytes within cerebral blood vessels seems to be an essential component of the pathogenesis. However, other factors such as convulsions, acidosis, or hypoglycaemia can impair consciousness. In this review, we describe the clinical features and epidemiology of cerebral malaria. We highlight recent insights provided by ex-vivo work on sequestration and examination of pathological specimens. We also summarise recent studies of persisting neurocognitive impairments in children who survive cerebral malaria and suggest areas for further research.
Back to top
Introduction
Cerebral malaria is the most severe neurological complication of infection with Plasmodium falciparum and is a major cause of acute non-traumatic encephalopathy in tropical countries (panel 1). Mortality is high and over the past two decades the extent of persistent neurocognitive deficits after recovery has become apparent. In this paper, we review work that has provided further understanding of the pathogenesis and describe the long-term neurocognitive outcomes of cerebral malaria.
Panel 1: Cerebral malaria in clinical practice Diagnosis
Suspect cerebral malaria in any patient with impaired consciousness in a malaria-endemic region or recent travel to such areas.
Examine thick and thin peripheral blood smears for P falciparum malaria parasites.
Exclude other causes for encephalopathy (determine blood sugar concentrations to exclude hypoglycaemia, examine cerebrospinal fluid to exclude acute bacterial meningitis).
Mangement
Control seizures, correct hypoglycaemia, hypoxia, shock, and anaemia.
Give recommended antimalaria drugs in that region.
Assess for evidence of neurological damage (visual, speech, hearing, and motor deficits) before discharge.
Back to top
Epidemiology and immunity
In 2002, there were 515 million cases of malaria in the world; 25% in southeast Asia and 70% in Africa, mostly sub-Saharan Africa.1 In most developed countries, malaria is seen in immigrants or people returning from travels in malaria-endemic areas. In the UK there were 1722 cases of malaria in 2003.2
In sub-Saharan Africa, children are most commonly affected, such that malaria may account for 40% of paediatric admissions to some hospitals, 10% of which may be due to cerebral malaria.3 The incidence of cerebral malaria in malaria-endemic areas of sub-Saharan Africa is 1?12 cases per/1000 children per year,4 with a mortality of 18?6%.5P falciparum malaria can cause other complications, such as severe anaemia, acidosis or hypoglycaemia, and several complications can occur in a single patient.
Severe malaria in young children in malaria-endemic areas is dependent on age and level of transmission (ie, number of infected mosquito bites per person per year). In areas of intense transmission, infection and clinical disease are rare in children up to age 6 months, symptoms are mild as a result of passive immunity from maternal antibodies. In these areas, the main burden of disease is in infants in the first 2 years of their lives, and by age 4 years clinical disease is rare and typically mild.6 In areas with less intense transmission, the peak incidence of severe disease falls at a later age; severe anaemia is most common in infants younger than age 2 years and the peak incidence of cerebral malaria is later; the cause of this age-related difference is unclear. Repeated infections over several years provide protection against disease. Partial immunity develops but declines in the absence of continuous exposure; although partial protective immunity was reported in Africans who had been resident in France for at least 4 years.7
Back to top
Clinical features of cerebral malaria
WHO proposed a definition of cerebral malaria as a clinical syndrome characterised by coma (inability to localise a painful stimulus) at least 1 h after termination of a seizure or correction of hypoglycaemia, detection of asexual forms of P falciparum malaria parasites on peripheral blood smears, and exclusion of other causes of encephalopathy.8 This definition is particularly useful for comparisons of different areas and studies; it is used in children and adults, although, there are notable clinical differences (table 1)9?33 and it is not entirely clear if these differences are associated with immunity or age.
Table 1. Clinical features and outcomes of cerebral malaria in African children and southeast Asian adults
Clinical features of cerebral malaria in African children
Children who are admitted with cerebral malaria present with a 1?3 day history of fever, anorexia, vomiting, and sometimes coughing. The main neurological features are coma, seizures, and brainstem signs.9,23,30
Coma
Cerebral malaria is a diffuse encephalopathy characterised by coma and bilateral slowing on electroencephalography30,34 (figure 1). This type of malaria has many features similar to metabolic encephalopathy, such as presenting with abnormal pupillary signs and coma being potentially reversible. The cause of impaired consciousness is unclear but is likely to result from several interacting mechanisms. The depth of coma is an important prognostic factor.8,30
Click to enlarge image
Figure 1. Electroencephalography recordings in cerebral malaria Top: Electroencephalography recording in a Kenyan child with cerebral malaria showing diffuse high amplitude slow-wave activity more marked over the left hemisphere. Bottom: Electroencephalography recording in a Kenyan child with cerebral malaria showing electrical seizure activity (arrows) most prominent over the left temporal region (electroencephalography recordings taken by R Idro).
Seizures
Seizures are commonly reported in children with cerebral malaria and occur in over 60% after admission11,23,34,35 (table 1). Many patients with seizures are hypoxic and hypercarbic from hypoventilation and are at risk of aspiration.11,35?37 In a study with 65 Kenyan children, 40 (62%) had seizures after admission and ten (15%) had subtle seizures, manifesting as nystagmoid eye movements, irregular breathing, excessive salivation, and conjugate eye deviation.11 Seizures are often repetitive and prolonged, and 18 children (28%) had an episode of status epilepticus. Multiple and prolonged seizures are associated with increased mortality33,38,39 and neurocognitive deficits.35,40
The causes of seizures are unclear; most are not associated with fever at the time of the seizure.35 In children, seizures do not seem to result from electrolyte disorders41 or antimalarial drugs.34 Electroencephalography shows that many seizures originate over the temporoparietal regions (a watershed area; figure 1), suggesting that ischaemia and hypoxia may play a part.34 Seizures might be caused by sequestration of infected erythrocytes or parasite-derived toxins. Furthermore, immune mechanisms may be important, because children with severe malaria and seizures have high titres of antibodies to voltage gated calcium channels.42
Brainstem signs
Brainstem signs are common and are associated with other features of high intracranial pressure and brain swelling (figure 2), but may occur after seizures.15,16 These brainstem signs do not seem to be associated with hypoglycaemia or electrolyte disorders.15,16 Common signs include changes in pupillary size and reaction and disorders of conjugate gaze and eye movements. Absence of corneal and oculocephalic reflexes are associated with increased mortality.9 Other signs include abnormal respiratory patterns (such as hyperventilatory, ataxic, and periodic breathing),36 posture (decerebrate, decorticate, or opisthotonic posturing), and motor abnormalities of tone and reflexes.9,23 Abnormal motor posturing seems to be associated with raised intracranial pressure rather than seizures.43
Click to enlarge image
Figure 2. Radiological features of the brain in cerebral malaria Scan of the brain in a Kenyan child with cerebral malaria showing (A) swelling of the brain with compressed ventricles (arrow) and loss of sulci and (B) resolution of the brain swelling. A CT scan showing (C) brain swelling with diffuse hypodensity sparing the basal ganglia (arrows) and (D) convalescent scan in a child showing cerebral atrophy with infarction (arrows) of the right frontal and parietal regions. Reproduced with permission from the BMJ Publishing Group.31
Malarial retinopathy
Retinal abnormalities are common in children with cerebral malaria and may be related to pathological changes.17,44,45 Characteristic features include whitening of the macula (that spares the central fovea), peripheral retina, retinal vessels, papilloedema, and multiple retinal haemorrhages (often with pale centres; figure 3). These signs are best seen by indirect ophthalmoscopy and affect over 60% of children with cerebral malria;45 the specificity might help in the diagnosis of cerebral malaria. In Malawian children, the presence of retinopathy?particularly papilloedema?was associated with prolonged coma and death.17 In patients who recover, these features resolve over 1?4 weeks.
Click to enlarge image
Figure 3. Retinopathy of malaria White-centred retinal haemorrhage (A) and orange vessels in a Malawian child with cerebral malaria. Macula retinal whitening (B) around the foveola (central dark disc) in a child with cerebral malaria. Cotton wool spots are also visible superiotemporal to the optic disc. Vessel changes (C) in a Malawian child with cerebral malaria?from red to pale orange. Vessel changes (D) in a Malawian child with cerebral malaria?from red to white. Photographs courtesy of Dr Nicholas Beare, Malawi-Liverpool-Wellcome Trust Clinical Research Programme College of Medicine, Malawi.
Concomitant complications
Metabolic perturbations are common in children with cerebral malaria. Hypoglycaemia is present in up to a third of patients on admission and commonly recurs even after initial correction. Causes include depletion of glycogen stores, inadequate intake, impaired hepatic gluconeogenesis and quinine-induced hyperinsulinaemia.9,20,46 Metabolic acidosis presents as deep breathing and is commonly associated with hyperlactaemia; this may be caused by hypovolaemia and inadequate tissue perfusion, anaemia, lactate production by parasites, and cytokine-induced failure of oxygen utilisation.3,36,37,47 Resuscitation with fluids or blood transfusion can improve outcome.48 Many children with dehydration have transient impairment of renal function but, unlike in adults, overt renal failure is rare. Over 50% of patients have hyponatraemia,21 but the cause is unclear.21,49 Concomitant bacterial infections occur in 5?8% of children with cerebral malaria50,51 and leucocyte counts above 15000/μL are associated with poor prognosis.9 Other features include hepatomegaly, splenomegaly, and in some cases jaundice.
Back to top
Clinical features of cerebral malaria in adults
Cerebral malaria in adults is part of a multiorgan disease.30 After a few days of illness patients typically present with fever, malaise, headache, joint and body aches, anorexia, and delirium, and they then develop coma. Seizures are less common in southeast Asian adults compared with African children and the incidence seems to be declining generally.30
Encephalopathy in adults is characterised by symmetrical upper-neuron lesion signs. Patients can have dysconjugate eye deviation, extrapyramidal rigidity, trismus, and decorticate and decerebrate rigidity.10 Papilloedema and retinal exudates are rare, but 15% of patients have retinal haemorrhages which are associated with increased mortality.52 Recovery from coma is slower in adults than in children.31 Thiamine deficiency might contribute to some of these neurological symptoms.53 In a few patients, abnormalities such as cortical infarcts, cerebral venous thrombosis, or dural sinus thrombosis (figure 4)54,55 can happen as a consequence of the hypercoagulable state.
Click to enlarge image
Figure 4. Cerebral infarcts in adults with cerebral malaria Left: infarcts in a 36 year old man with cerebral malaria. Hyperintense cortical areas (infarcts) seen on a fast spin-echo T2 weighted MR image (arrow). Reproduced with permission from the American Society of Neuroradiology.54 Right: contrast enhanced brain CT scan of a 48 year old man who presented with left focal becoming generalised seizures and left hemiparesis. A large area of hemorrhagic infarction is seen in the right frontoparietal cortex with surrounding oedema. Absence of contrast is seen as a hypodense area in the posterior aspect of the superior sagittal sinus. Reproduced with permission from the British Infection Society.55
In some patients, cerebral malaria is complicated by pulmonary oedema or adult respiratory distress syndrome.13,56 Kussmaul's breathing occurs with acute renal failure and severe lactic acidosis.10,19 Other complications of P falciparum malaria such as anaemia, haemoglobinuria, jaundice, shock, and coagulation disorders have been reported.57?60 A high incidence of multiorgan failure is seen among those admitted to intensive care units, this is because mostly very ill patients who have not responded to treatment are admitted to these units.26 Bacterial co-infection is common, particularly in those with shock, and accounts for most late (after 7 days) deaths. Respiratory failure has the worst prognosis and develops late in the course of the illness.26 Chronic hepatitis B infection may be a risk factor for severe malaria, including cerebral malaria in adults.61
Back to top
Diagnosis
Cerebral malaria should be considered in the differential diagnosis of any patient who has a febrile illness with impaired consciousness who lives in or has recently travelled to malaria endemic areas. At least three negative blood smears (on microscopy) 8?12 h apart are required before the diagnosis can be excluded. Rapid tests, such as the immunochromatographic test for the histidine-rich protein 2 (from P falciparum) and lactate dehydrogenase can be helpful in the absence of positive blood smear, although, they do not give information about the parasite load and their sensitivity and specificity decreases at low parasitaemia.62 PCR tests are more sensitive than microscopy but expensive and do not give estimates of parasite load.63
In malaria-endemic areas, cerebral malaria is a diagnosis of exclusion. The high prevalence of asymptomatic parasitaemia in these areas makes accurate diagnosis less certain?almost any viral encephalopathy with incidental parasitaemia fulfils the diagnostic criteria for cerebral malaria. In a study by Taylor and colleagues,64 24% of Malawian children who fulfilled the criteria for cerebral malaria before death had evidence at post mortem of an alternative cause for coma, including Reye's syndrome, hepatic necrosis, and ruptured arteriovenous malformation. The presence of malarial retinopathy was the only clinical feature to distinguish patients with typical histopathological features of cerebral malaria from those with other illnesses. Lumbar puncture must be done to exclude other causes for encephalopathy, although there are differences of opinion about the timing of this procedure.16,65 There may be mild pleocytosis and high protein concentrations.66 High plasma and cerebrospinal fluid concentrations of lactate are associated with increased mortality.9,46 Over 40% of children with cerebral malaria have swollen brains18 (figure 2), but this finding is less common in adults.67
Back to top
Pathogenesis
In P falciparum infections, consciousness can be impaired by various mechanisms interacting with each other30 (panel 2).68?88 The relative contributions of these mechanisms may differ in children and adults. Thus, unlike in adults, seizures seem to be an important cause of impairment of consciousness in children.
Panel 2: Postulated mechanisms for coma in cerebral malaria Obstruction of cerebral microvascular flow
Parasite-induced sequestration of infected and unifected arythrocytes mediated through cytoadherence,68 rosette formation,69 autoagglutination69,70 and reduced red cell deformability.71
Seizures
Overt seizures11,35,37
Subtle and electrographic seizures11,37
Postictal state37
Impaired delivery of substrate
Hypoglycaemia9,23
Anaemia72
Hypoxia73
Impaired perfusion
Hypovolaemia47,74
Shock75
Acidosis75
Raised intracranial pressure and brain swelling
Disruption of the blood?brain barrier76,77
Raised intracranial pressure15,16,18
Cerebral oedema78?80
Cytotoxic oedema18,78
Toxins
Nitric oxide81
Reactive oxygen species82,83
Excitotoxins30,84?86
Malaria toxin87
Clotting
Intravascular coagulation as a minor mechanism88
Research strategies
The main strategies to study pathogenesis have been clinical case series and case-control studies, post-mortem surveys, in vitro studies, or animal models. However, there are no reliable animal models of cerebral malaria. Many primates naturally have plasmodium infections but rarely develop clinical features similar to human cerebral malaria. P falciparum does infect new-world monkeys, but severe symptoms are common only in splenectomised animals. Some species do develop cerebral dysfunction associated with adherence of infected erythrocytes to cerebral endothelial cells.89,90 Although coma is not a typical consequence of plasmodium infection in these primates, adherence of infected erythrocytes to cerebral endothelial cells has contributed to the understanding of parasite-induced sequestration.
Important research on cerebral malaria has been done with mice. The characteristics of the infection are dependent on the strains of mice and plasmodium. The most popular model is CBA mice infected with the ANKA strain of Plasmodium berghei.91 Coma, seizures, and death were reported, but unlike human cerebral malaria these could not be reversed or prevented with treatment. The pathology is different in mice, infected erythrocytes do not commonly sequester; instead, monocytes occur in cerebral vessels, and inflammatory cytokines are essential for the pathogenesis. However, monocytes are also seen in the cerebral vessels of some African children,64 but the importance of this finding is still unclear. The use of murine models, particularly gene knock-out strains, has provided much information on the immune and inflammatory responses to plasmodium infections.
Sequestration
A consistent histological finding in cerebral malaria in both children and adults is the presence of infected and non-infected erythrocytes packed within cerebral vessels (figure 5). Sequestration might happen as a consequence of cytoadherence of infected erythrocytes to endothelial cells via P falciparum derived proteins on the infected erythrocyte surface attaching to ligands upregulated in the venules. Sequestration can be increased when adherent infected erythrocytes bind other infected erythrocytes (autoagglutination) or non-infected erythrocytes (rosetting) or use platelets to bind other infected erythrocytes (platelet-mediated clumping). Not all parasites display these adhesive properties, but these phenotypes are most commonly present in infected erythrocytes taken from children and adults with severe malaria.
Click to enlarge image
Figure 5. Sequestration of infected erythrocytes in cerebral vessels Left: P falciparum infected erythrocytes sequestered in a cerebral vessel of a Vietnamese adult with fatal cerebral malaria (haematoxylin and eosin staining ?400. Courtesy of Dr Gareth Turner, Nuffield Department of Histopathology, John Radcliffe Hospital, Oxford. Middle: electron microscopy showing the ultrastructural details of a P falciparum IE adhering to an endothelial cell in vitro. P=parasite, En=endothelial cell and arrows point out the adhesion points at the electron dense knob proteins. Courtesy of Professor David Ferguson, Department of Clinical Laboratory Sciences, Oxford University. Right: freeze fracture electron micrograph of the infected erythrocyte surface revealing the symmetrical distribution of knob proteins on the surface. Courtesy of Professor David Ferguson, Department of Clinical Laboratory Sciences, Oxford University.
Parasite binding is mediated by a group of variant surface antigens expressed at the red-cell surface during development. The best described is P falciparum erythrocyte membrane protein-1 (PfEMP1) which is encoded by a family of about 60 variant genes associated with different binding phenotypes. Each parasite expresses the transcript of only one variant gene but can switch to express a different variant gene (about 2% per generation in vitro),92 and therefore display both a change in binding phenotype and antigen. Although the trigger for variant gene switching is unknown the rapid switching in non-immune volunteers does not support the role of immune pressure.93 Some variant surface antigens seem to be most common in young children with severe disease, and thus might be more capable of causing cerebral malaria than others,94 but whether this is the result of adhesion phenotype or host response is unclear.
PfEMP1 is able to bind to many host receptors on endothelial cells, chief among which are CD36 and the intercellular adhesion molecule 1 (ICAM1).95,96 The binding of infected erythrocytes to ICAM1 has been implicated in the pathogenesis of cerebral malaria.97 Post-mortem studies have revealed upregulation of ICAM1 expression on the cerebral vascular endothelium in cerebral malaria,79,98 which, in adults, was localised to areas of parasite-induced sequestration.99 A common ICAM1 polymorphism (ICAM1Kilifi) that changes protein binding to infected erythrocytes100 was associated with susceptibility to cerebral malaria in Kenyan children,101 but not in The Gambia.102 In a study describing the binding affinities of parasites taken from Kenyan children with malaria, ICAM1 binding was highest in those with cerebral malaria. However, we do not know how representative circulating parasites are of those sequestered within cerebral vessels and although ICAM1 seems important, many host receptors are likely involved in concert in the process resulting in cerebral malaria.
Reduction in microvascular flow
Sequestration of infected and non-infected erythrocytes within the cerebral vessels reduces the microvascular flow. In addition, the presence of parasites inside erythrocytes decreases the ability to deform (low red-cell deformability) so that erythrocytes have more difficulty in passing through the microvasculature. Studies of Thai adults103 and Kenyan children104 have found strong associations between low red-cell deformability and severe disease in adults with outcome. The rapid reversibility of clinical symptoms suggests that tissue necrosis is unlikely to occur. However, there may be a critical reduction in the supply of metabolic substrate to the brain. This will be exacerbated by increased demand during seizures and fever, and may be worse in patients with severe anaemia or hypoglycaemia.23,72 Cerebral blood flow may also be reduced by high intracranial pressure. Inflammatory cytokines can result in inefficient use of substrates.
Inflammatory response
P falciparum infection results in increases in both proinflammatory and anti-inflammatory cytokines. The balance of inflammatory mediators seems critical to parasite control, but their role in the pathogenesis of severe malaria is unclear. In Malian children, concentrations of both interleukin 6 (proinflammatory) and interleukin 10 (anti-inflammatory) were higher in patients with cerebral malaria than in those with non-cerebral malaria?but there was no increase in interleukin 1, interleukin 8, interleukin 12, or tumour necrosis factor.105 In Gambian and Ghanaian children, concentrations of tumour necrosis factor and its receptor were higher in those with cerebral malaria than in those with mild or uncomplicated malaria.106,107 Several polymorphisms in the tumour necrosis factor promoter region have also been associated with increased risk of cerebral malaria and death,108 or neurological sequelae.109 In Vietnamese adults, concentrations of interleukin 6, interleukin 10, and tumour necrosis factor were high in patients with severe multiorgan disease but were low in patients with cerebral malaria alone, suggesting their involvement in the process leading to severe malaria but not coma.110 Post-mortem analysis of Malawian children with cerebral malaria suggest increased local production of tumour necrosis factor and interleukin 1.111 However, there was no association between production or staining for these cytokines and sites of parasite sequestration.
Nitric oxide might be a key effector for tumour necrosis factor in the pathogenesis of malaria. Nitric oxide is involved in host defence by killing intracellular organisms, in maintenance of vascular status, and in neurotransmission. Cytokines may upregulate inducible nitric oxide synthase (iNOS) in brain endothelial cells, increasing production of nitric oxide, which diffuses into brain tissue and disrupts neuronal function.81 Nitric oxide may rapidly and reversibly reduce the level of consciousness81 because it is short-lived and can easily diffuse across the blood?brain barrier to interfere with neuronal function.
The associations found between disease and nitric oxide activity, iNOS, or genetic polymorphisms in the iNOS promoter gene have not been consistent. Results have varied with age, endemicity, and geographical location. Post-mortem staining of brain specimens in African children and southeast Asian adults have revealed increased iNOS in vessel walls associated with sequestered parasites in cerebral malaria,112 whereas in other studies, nitric oxide is associated with protection.113,114 Upregulation of iNOS by tumour necrosis factor may set off a negative feedback mechanism through nitric oxide to control the stimulatory action on iNOS. However, in some individuals, production of nitric oxide happens too slowly to downregulate the primary wave of tumour necrosis factor induction, so that a slow build up of iNOS-induced nitric oxide allows iNOS and nitric oxide to reach the harmful concentrations seen in cerebral malaria.115
Blood?brain-barrier function
Because parasites are largely confined to intravascular spaces, one main question regarding the pathogenesis of cerebral malaria is how these parasites cause neuronal dysfunction.116 There is growing evidence that parasite-induced sequestration of infected and uninfected erythrocytes changes blood?brain barrier function. In Thai adults, transfer of radioactively labelled albumin into cerebrospinal fluid was not raised during unconsciousness compared with convalescence.117 No significant changes were reported in the albumin index (ratio of concentrations of albumin in cerebrospinal fluid to those in blood) in Vietnamese adults.77 However, in Malawian children, albumin indices were significantly higher than in UK controls (adults dying from non-neurological or infectious causes),76 although, there were no differences between children who died and those who survived.
Post-mortem analysis has shown widespread cerebrovascular endothelial cell activation (increased ICAM1 endothelial staining, reduction in cell-junction staining, and disruption of junction proteins), particularly in vessels containing infected erythrocytes.118 Perivascular macrophages in these areas expressed scavenger receptor and sialoadhesin?normally expressed only after contact with plasma proteins. However, such disruption of intercellular junctions was not associated with significant leakage of plasma proteins (fibrinogen, IgG, or C5b-9) into perivascular areas or cerebrospinal fluid.76 Adams and colleagues119 suggested that ICAM1 binding by infected erythrocytes results in a cascade of intracellular signalling events that disrupt the cytoskeletal-cell junction structure and cause focal disruption to the blood?brain barrier. Focal disruptions in the barrier at sites of sequestration could result in the exposure of sensitive perivascular neuronal cells to plasma proteins and increased concentrations of cytokines and metabolites caused by abnormalities in microcirculation; this may contribute to reduced consciousness and seizure activity.
Brain swelling
In Kenyan children in deep coma, 40% had evidence of brain swelling on CT (figure 2); however, during recovery some children with severe encephalopathy had evidence of cytotoxic oedema, which can contribute to severe intracranial hypertension.18 Severe intracranial hypertension was associated with death or neurological sequelae.15 In a study of 21 Indian adults, abnormalities on CT scans were related to the Glasgow coma score and mortality.120 Cerebral oedema was seen in eight patients, two of whom died. Other studies of Thai adults have found little evidence of cerebral oedema on CT121 or MRI67 but documented brain swelling. Although no substantial leakage of plasma proteins has been reported,76 the blood?brain-barrier disruption can contribute to the high intracranial pressure reported in African children. However, the most likely cause of raised intracranial pressure is increased cerebral blood volume as a result of sequestration of infected erythrocytes and increased cerebral blood flow from seizures, hyperthermia, or anaemia.5,30
Pathological findings
Post-mortem studies have provided a wealth of detailed information but they reflect, at best, pathology at a single point after death in the most severely ill patients. Recent surveys from Malawi and southeast Asia have found a significant association between the amount of sequestration and ante-mortem diagnosis of cerebral malaria. Sequestration is extensive, occurring in all parts of the brain to a similar extent, but with substantial variability between individuals and between vessels in an individual.122 Brain swelling is common but evidence for frank herniation is rare in adults, although more common in children.80 Cut surfaces show petechial haemorrhages (figure 6).123 Electron microscopy shows knob-like protrusions on the surface of infected erythrocytes and at sites of attachment to vascular endothelium (figure 5).78 Studies in Malawian children show intravascular and perivascular pathological changes (haemorrhages, accumulation of pigmented white blood cells and thrombi) in 75% of cases. These are associated with high concentrations of extraerythrocytic haemozoin (a product of haemoglobin metabolism by malaria parasites) inside cerebral vessels. Thus, rupture of infected erythrocytes can lead to an inflammatory process within and around brain capillaries.64 These findings are not consistent in adults122,124 and may reflect differences between adults and children.
Click to enlarge image
Figure 6. Gross pathological appearance of the brain in cerebral malaria Macroscopic section of the brain from a fatal case of cerebral malaria showing petechial haemorrhages in white matter, particularly in the subcortical rim and corpus callosum. Reproduced with permission from International Society of Neuropathology.123
Amyloid-β precursor protein staining (a marker of axonal injury) was found on post-mortem brain specimens of adults with cerebral malaria.125 Two patterns were observed; a diffuse increase or a predominance of axonal injury in one brain region?typically the internal capsule or pons. Axonal injury correlated with plasma lactate, cerebrospinal fluid protein, and Glasgow coma score. Increased concentrations of the microtubule-associated protein tau (from degenerated axons)?but not neural cell body or astrocyte proteins in cerebrospinal fluid?suggested that most of the brain parenchymal damage is in axons.126 High concentrations of quinolinic acid were found in cerebrospinal fluid,84 but in Vietnamese adults this was related to impaired renal function.85
Back to top
Outcome of cerebral malaria
Most patients with cerebral malaria seem to make a full recovery, but neurocognitive sequelae have been increasingly recognised, particularly in African children in the past 20 years.
Mortality
The mortality rate in adults and children is about 20%, and most deaths happen within 24 h of admission, before antimalarial drugs may have had time to work. The mechanisms of death seem to vary (figure 7).
Click to enlarge image
Figure 7. Possible mechanisms for death and neuro-cognitive impairment in cerebral malaria and some areas for possible intervention (1) P falciparum infected erythrocytes adhere to the vascular endothelium and possibly sequester in large numbers in the brain. (2) Local and systemic changes produce significant vital organ dysfunction leading to severe metabolic derangement, which may result in death unless urgent correction (eg, correction of blood glucose, dialysis or ventilation) is initiated. (3) Sequestration of infected erythrocytes within the cerebral vessels increases the cerebral volume, which together with the increase in cerebral blood flow caused by seizures, anaemia, and hyperthermia (4), and the altered blood?brain barrier function lead to brain swelling and raised intracranial pressure (ICP; 5). This may cause death (through global cerebral ischaemia, transtentorial herniation or brainstem compression) or result in neuronal damage with consequent neuro-cognitive impairments. Sequestered parasites may also produce local toxins and ischaemia or influence the production of inflammatory products such as cytokines and result in multiple seizures and neuronal damage. Metabolic derangement is more common in adults whereas raised ICP and seizures are commoner in children. Possible areas for intervention are highlighted.
In African children, most deaths occur with brainstem signs after a respiratory arrest (initially with a good cardiac output), suggestive of transtentorial herniation or cardiorespiratory arrest in association with severe metabolic acidosis. Four of seven children in Nigeria had cerebral oedema or features of herniation at autopsy.80 Mortality is high among children with shock, hypoglycaemia, multiple and prolonged seizures, deep coma, or severe acidosis.9,23,127
Many adults die with renal failure or pulmonary oedema. Mortality is particularly high in pregnant patients or those with vital organ dysfunction.28,128 Patients can die with an acute respiratory arrest, commonly after a period of respiratory irregularity, but with a normal blood pressure. Others die with shock or hypoxia secondary to acute pulmonary oedema.
Neurocognitive deficits
In African children, a high incidence of neurological deficits (10?9%) was reported in a meta-analysis which used studies with a similar definition of cerebral malaria.5 Some deficits are transient (eg, ataxia), whereas others (eg, hemiparesis) improve over months but may not resolve completely. Children living in Africa with severe neurological sequelae (spastic quadriparesis and vegetative states) often die within a few months of discharge.129 Recent studies have reported that epilepsy is associated with cerebral malaria.130
Cognitive impairments have been described in some studies,39 but not in others.131 Impairment has been reported in a wide range of cognitive functions; memory, attention, executive functions and language.39,129,132?134 Neurocognitive impairments can be associated with protracted seizures,11,32,38 deep and prolonged coma,33 hypoglycaemia, and severe anaemia, but are not always.32,38 The consistent association found between prolonged seizures or hypoglycaemia and neurocognitive impairment suggest hippocampal damage, which can manifest as memory impairment and complex partial seizures at a later date. The development of impairments might be associated with pathophysiological processes, such as raised intracranial pressure.15 Most of these factors are also associated with death, and may simply reflect the severity of the underlying insult, rather than a specific neuropathogenic process. 24% of children have evidence of some impairments after cerebral malaria, so this represents a substantial burden in malaria-endemic areas, suggesting that at least 250000 children will develop neurocognitive impairments from malaria in sub-Saharan Africa each year.134
In non-immune adults, the prevalence (<5%) and severity of subsequent neurological impairments is less than in children. Impairments are not confined to cerebral malaria, but may follow non-cerebral malaria.135 They include cranial-nerve lesions, neuropathies, and extrapyramidal disorders.10,136 Some patients develop transient psychosis or delirium during recovery, whereas others develop focal epilepsy sometimes associated with transient tomographic opacities in the brain. In Vietnam, a self-limiting ?post-malaria neurological syndrome? consisting of acute confusional state, acute psychosis, generalised convulsions, or tremor occurred in 0?12% of patients with P falciparum malaria.135
Cognitive deficits after malaria in adults are not well documented. There are case reports of impairment of memory and naming ability. Psychological tests did not detect any residual defects in a small group of American soldiers after cerebral malaria,137 although a recent retrospective study suggests that cerebral malaria results in multiple neuropsychiatric symptoms, including poor dichotic listening, personality change, depression, and in some cases partial-seizure-like symptoms.138 A study of Ghanaian adults suggested that subclinical mixed anxiety?depression syndrome can occur after P falciparum malaria.139
Back to top
Management of cerebral malaria
WHO has developed guidelines for management of patients with cerebral malaria8 and new guidelines were recently proposed for the UK.140 Emergency management aims to rapidly correct severely deranged metabolic states, restoring vital physiological functions (panel 3), and the administration of an effective and rapidly active parasiticidal drug.
Panel 3: Emergency management and supportive care
?Maintain airway, give high-flow oxygen if hypoxaemic or respiratory distress
?Treat hypoglycaemia with a bolus infusion 2 mL/kg of 25% dextrose, monitor for recurrence
?Control seizures (benzodiazepines, paraldehyde, phenytoin, phenobarbital)
?Correct shock with normal saline, initial infusion of 20 mL/kg over 30 min
?Offer blood transfusion if haematocrit is <15% in children or <20% in adults
?Give fresh blood transfusion and vitamin K for spontaneous bleeding
?Give first-line antibiotics for pyogenic meningitis and bacterial sepsis until these are excluded
?Ventilate adults with pulmonary oedema and offer dialysis if in renal failure
Resuscitation on admission
Because most patients die within 24 h of admission before therapeutic benefits of antimalaria drugs,5 supportive therapy might improve outcome. Treatment of hypoxaemia, hypoglycaemia, shock, severe metabolic acidosis, and seizures is important. Urgent resuscitation with fluids might be required for those with hypovolaemia,22,47,48,140 although fluids should be given carefully. The administration of albumin reduced mortality in a small trial in children with cerebral malaria,75 but trials to confirm this finding are still needed. Whole-blood or packed-cell transfusions should be given for severe anaemia. Recurrences of hypoglycaemia can be prevented by continuous infusion of fluids containing glucose until consciousness is regained.
Antimalarial therapy
Cinchona alkaloids (quinine, quinidine, and cinchonine) and artemisinin derivatives (artesunate, artemether and arteether) are recommended for cerebral malaria (table 2).5,8,141?145 Cinchona alkaloids take effect during the later stages of parasite development, whereas artemisinins are active at both early and late stages. A loading dose of either drug should be given to rapidly achieve antiparasiticidal concentrations.
Table 2. Antimalarial treatment of cerebral malaria
Quinine is still used extensively and can be given intravenously or intramuscularly. A loading dose is associated with faster clearance of parasitaemia and resolution of fever and coma.145 A 12 hourly dose regimen can be used in younger children.146 Quinidine is more toxic (especially cardiotoxicity) and expensive than quinine and a dose reduction might be necessary if the corrected QT interval is prolonged.147 In some parts of French-speaking Africa, quinimax (a combination of quinine, quinidine, cinchonine, and cinchonidine) is commonly used.148 The main side-effects of cinchona alkaloids are hyperinsulinaemic hypoglycaemia, and cinchonism (giddiness, tinnitus, high-tone deafness, and colour aberrations [in which patients see rings of colour around objects]). Although high doses of quinine can induce uterine contractions, normal therapeutic doses can be used safely in pregnancy.149 Doses of the cinchona alkaloids should be reduced by 30?50% if intravenous therapy is required beyond 3 days to avoid accumulation.
Artemisinin derivatives clear circulating parasites faster than other antimalarial drugs,150 and adults treated with artesunate have a lower mortality than those treated with quinine.151 The artemisinin derivatives should be used in combination with other antimalarial drugs to prevent resistance. Side-effects are not common152 and artemisinin derivatives are easier to give than cinchonoids. Studies with mice show that parenteral artemether and arteether (artemotil) are associated with damage to brainstem nuclei,153 but no evidence of these neurotoxic effects have been detected in human beings.154 Rectal preparations may be useful in rural health facilities.142
Supportive therapy
Ventilation and dialysis can be life saving in adults with pulmonary oedema or renal failure respectively. Children should receive antimicrobials to cover the possibility of bacterial infections until these can confidently be excluded by examination of cerebrospinal fluid, blood, and urine.8 Exchange transfusion has been recommended for non-immune adult patients with parasite densities >30% as it reduces parasitaemia and improves red-cell flow, but there is no conclusive evidence that it reduces mortality.143
Therapies with deleterious or unproven value
Several other adjunct therapies have been tested but as yet remain unproven.8 Steroids are deleterious, whereas acetyl-salicylic acid, sodium bicarbonate, and heparin can be harmful. Desferoxamine and dextran have unclear roles. Hyperimmune serum confers no benefit, whereas, monoclonal antibodies to tumour necrosis factor were associated with a worse neurological outcome. Although pentoxifylline was associated with early resolution of coma and low mortality in Burundian children, no benefit was reported in other studies.155 Mannitol reduces intracranial hypertension but such decreases are neither sustained nor does it prevent the development of severe intracranial hypertension.15 Prophylactic phenobarbital (10 mg/kg) did not control seizures,156 20 mg/kg phenobarbital was associated with increased mortality in unventilated Kenyan children157 but in Thai adults a single intramuscular injection of 3?5 mg/kg prevented convulsions.158 Dichloroacetate, an activator of pyruvate dehydrogenase, reduces blood concentrations of lactic-acid, but clinical trials are needed to assess how it affects outcome.159
Back to top
Areas for research
Prevention of malaria is a priority and the widespread use of preventive measures such as insecticide-treated materials can reduce all childhood deaths by 20%.160 Together with prompt treatment of fever with effective antimalarial drugs, these interventions can reverse rising mortality as a result of malaria in Africa. Basic research continues to explore vaccines as an ideal preventive instrument for malaria. There is no vaccine against infection because of the complexity of parasite biology. Insights into the processes leading to cerebral malaria might identify targets for a vaccine that allows infection and the acquisition of immunity, but prevents cerebral malaria.
Further definition of the phenotype of cerebral malaria would help provide insights into the pathogenesis, in particular the associations with genetic polymorphisms. A robust exclusion of other causes of encephalopathies in patients presenting with coma and a peripheral parasitaemia in endemic areas would reduce the contamination effect of these disorders on the pathogenesis and outcome of studies of cerebral malaria. Careful documentation of retinal findings may be particularly important.
There are technical difficulties in the study of subtle cerebral processes in comatose patients. The development of a reliable animal or in-vitro model may provide further insights. The technology exists to refine the murine model by inserting human genes (transgenics) into the mouse genome to allow the replacement of murine proteins with human ones. Infection of these models with P falciparum would recreate the key clinical and pathological processes.
Most deaths happen before antimalarials have had time to kill the parasites. In addition to addressing public-health problems resulting in delayed presentation to hospital and ensuring children receive prompt and appropriate resuscitation, new interventions that address pathophysiological processes causing these early deaths is a priority.
The scale of neurocognitive impairment reflects an enormous socioeconomic burden in resource-poor countries. Research is needed to clearly define the patients at risk and identify risk factors for persistent impairments. MRI, particularly of African children during acute illness and on recovery can provide insights into the pathogenesis of the neurocognitive damage. Interventions to prevent brain damage and rehabilitation programmes for those with neurocognitive impairments are needed. Such interventions might include; development of neuroprotective drugs, improvement in prophylactic anticonvulsant regimens, treatment of raised intracranial pressure in children, or correction of changes in brain (figure 7).
Back to top
Search strategy and selection criteria
Data for this review were identified by searches of PubMed and references derived from author lists from January 1965 to September 2005. The search terms used were ?cerebral malaria?, ?pathophysiology?, ?outcome?, and ?therapy?. Abstracts and reports from meetings were not used. We included some articles not published in English that had abstracts in English providing pertinent information unavailable from English-language publications. The final reference list was generated from papers that were relevant to this review.
Back to top
Authors' contributions
All authors contributed equally to reviewing the data and writing the paper.
Conflicts of interest
We have no conflicts of interest.
Acknowledgments
Two of the authors were supported by The Wellcome Trust, UK (CRJCN, grant number 070114 and NEJ, grant number GR066684MF).
Back to top
<!--start tail=-->References
1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434: 214-217. CrossRef
2. Health-Protection-Agency. Malaria imported into UK, 2003: implications for those advising travellers. CDR Wkly 2004; 18-23.
3. Marsh K, Forster D, Waruiru C, et al. Indicators of life-threatening malaria in African children. N Engl J Med 1995; 332: 1399-1404. MEDLINE | CrossRef
4. Snow RW, Craig MH, Newton CRJC, Steketee RW. The public health burden of Plasmodium falciparum malaria in Africa: deriving the numbers. Working Paper No. 11. Disease Control Priorities Project. Bethesda, MD: Fogarty International Center, National Institutes of Health, August 2003:
http://www.cdc.gov/malaria/pdf/snow_wp11.pdf
(accessed Nov 2, 2005).
5. Newton CR, Krishna S. Severe falciparum malaria in children: current understanding of pathophysiology and supportive treatment. Pharmacol Ther 1998; 79: 1-53. MEDLINE | CrossRef
6. Reyburn H, Mbatia R, Drakeley C, et al. Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. JAMA 2005; 293: 1461-1470. CrossRef
7. Bouchaud O, Cot M, Kony S, et al. Do African immigrants living in france have long-term malarial immunity?. Am J Trop Med Hyg 2005; 72: 21-25. MEDLINE
8. WHO. Severe falciparum malaria. Trans R Soc Trop Med Hyg 2000; 94 (suppl 1): 1-90. MEDLINE | CrossRef
9. Molyneux ME, Taylor TE, Wirima JJ, Borgstein A. Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Q J Med 1989; 71: 441-459. MEDLINE
10. Kochar DK, Shubhakaran, Kumawat BL, et al. Cerebral malaria in Indian adults: a prospective study of 441 patients from Bikaner, north-west India. J Assoc Physicians India 2002; 50: 234-241. MEDLINE
11. Crawley J, Smith S, Kirkham F, Muthinji P, Waruiru C, Marsh K. Seizures and status epilepticus in childhood cerebral malaria. Q J Med 1996; 89: 591-597.
12. Warrell DA. Cerebral malaria: clinical features, pathophysiology and treatment. Ann Trop Med Parasitol 1997; 91: 875-884. MEDLINE | CrossRef
13. Aursudkij B, Wilairatana P, Vannaphan S, Walsh DS, Gordeux VR, Looareesuwan S. Pulmonary edema in cerebral malaria patients in Thailand. Southeast Asian J Trop Med Public Health 1998; 29: 541-545.
14. Nacher M, Treeprasertsuk S, Singhasivanon P, et al. Association of hepatomegaly and jaundice with acute renal failure but not with cerebral malaria in severe falciparum malaria in Thailand. Am J Trop Med Hyg 2001; 65: 828-833. MEDLINE
15. Newton CR, Crawley J, Sowumni A, et al. Intracranial hypertension in Africans with cerebral malaria. Arch Dis Child 1997; 76: 219-226.
16. Newton CR, Kirkham FJ, Winstanley PA, et al. Intracranial pressure in African children with cerebral malaria. Lancet 1991; 337: 573-576. MEDLINE | CrossRef
17. Beare NA, Southern C, Chalira C, Taylor TE, Molyneux ME, Harding SP. Prognostic significance and course of retinopathy in children with severe malaria. Arch Ophthalmol 2004; 122: 1141-1147. MEDLINE | CrossRef
18. Newton CR, Peshu N, Kendall B, et al. Brain swelling and ischaemia in Kenyans with cerebral malaria. Arch Dis Child 1994; 70: 281-287.
19. Garg RK, Karak B, Misra S. Neurological manifestations of malaria: an update. Neurol India 1999; 47: 85-91. MEDLINE
20. English M, Wale S, Binns G, Mwangi I, Sauerwein H, Marsh K. Hypoglycaemia on and after admission in Kenyan children with severe malaria. Q J Med 1998; 91: 191-197.
21. English MC, Waruiru C, Lightowler C, Murphy SA, Kirigha G, Marsh K. Hyponatraemia and dehydration in severe malaria. Arch Dis Child 1996; 74: 201-205.
22. English M, Sauerwein R, Waruiru C, et al. Acidosis in severe childhood malaria. Q J Med 1997; 90: 263-270.
23. Idro R, Karamagi C, Tumwine J. Immediate outcome and prognostic factors for cerebral malaria among children admitted to Mulago Hospital, Uganda. Ann Trop Paediatr 2004; 24: 17-24. MEDLINE | CrossRef
24. Waller D, Krishna S, Crawley J, et al. Clinical features and outcome of severe malaria in Gambian children. Clin Infect Dis 1995; 21: 577-587. MEDLINE
25. Maitland K, Pamba A, Newton CR, Lowe B, Levin M. Hypokalemia in children with severe falciparum malaria. Pediatr Crit Care Med 2004; 5: 81-85. MEDLINE | CrossRef
26. Krishnan A, Karnad DR. Severe falciparum malaria: an important cause of multiple organ failure in Indian intensive care unit patients. Crit Care Med 2003; 31: 2278-2284. MEDLINE
27. Faiz MA, Rahman MR, Hossain MA, Rashid HA. Cerebral malaria: a study of 104 cases. Bangladesh Med Res Counc Bull 1998; 24: 35-42. MEDLINE
28. Day NP, Phu NH, Mai NT, et al. The pathophysiologic and prognostic significance of acidosis in severe adult malaria. Crit Care Med 2000; 28: 1833-1840. MEDLINE
29. White NJ, Warrell DA, Chanthavanich P, et al. Severe hypoglycemia and hyperinsulinemia in falciparum malaria. N Engl J Med 1983; 309: 61-66. MEDLINE
30. Newton CR, Hien TT, White N. Cerebral malaria. J Neurol Neurosurg Psychiatry 2000; 69: 433-441. MEDLINE | CrossRef
31. Mohanty S, Mishra SK, Pati SS, Pattnaik J, Das BS. Complications and mortality patterns due to Plasmodium falciparum malaria in hospitalized adults and children, Rourkela, Orissa, India. Trans R Soc Trop Med Hyg 2003; 97: 69-70. MEDLINE | CrossRef
32. Bondi FS. The incidence and outcome of neurological abnormalities in childhood cerebral malaria: a long-term follow-up of 62 survivors. Trans R Soc Trop Med Hyg 1992; 86: 17-19. MEDLINE | CrossRef
33. van Hensbroek MB, Palmer A, Jaffar S, Schneider G, Kwiatkowski D. Residual neurologic sequelae after childhood cerebral malaria. J Pediatr 1997; 131: 125-129. Abstract | Full Text | PDF (1591 KB) | MEDLINE | CrossRef
34. Crawley J, Smith S, Muthinji P, Marsh K, Kirkham F. Electroencephalographic and clinical features of cerebral malaria. Arch Dis Child 2001; 84: 247-253. CrossRef
35. Waruiru CM, Newton CR, Forster D, et al. Epileptic seizures and malaria in Kenyan children. Trans R Soc Trop Med Hyg 1996; 90: 152-155. MEDLINE | CrossRef
36. Crawley J, English M, Waruiru C, Mwangi I, Marsh K. Abnormal respiratory patterns in childhood cerebral malaria. Trans R Soc Trop Med Hyg 1998; 92: 305-308. MEDLINE | CrossRef
37. Marsh K, English M, Crawley J, Peshu N. The pathogenesis of severe malaria in African children. Ann Trop Med Parasitol 1996; 90: 395-402. MEDLINE
38. Brewster DR, Kwiatkowski D, White NJ. Neurological sequelae of cerebral malaria in children. Lancet 1990; 336: 1039-1043. MEDLINE | CrossRef
39. Holding PA, Stevenson J, Peshu N, Marsh K. Cognitive sequelae of severe malaria with impaired consciousness. R Soc Trop Med Hyg 1999; 93: 529-534.
40. Akpede GO, Sykes RM, Abiodun PO. Convulsions with malaria: febrile or indicative of cerebral involvement?. J Trop Pediatr 1993; 39: 350-355. MEDLINE
41. Crawley J, Kokwaro G, Ouma D, Watkins W, Marsh K. Chloroquine is not a risk factor for seizures in childhood cerebral malaria. Trop Med Int Health 2000; 5: 860-864. MEDLINE | CrossRef
42. Lang B, Newbold CI, Williams G, Peshu N, Marsh K, Newton CR. Antibodies to voltage-gated calcium channels in children with falciparum malaria. J Infect Dis 2005; 191: 117-121. MEDLINE | CrossRef
43. Idro R, Otieno G, White S, et al. Decorticate, decerebrate and opisthotonic posturing and seizures in Kenyan children with cerebral malaria. Malar J 2005; (in press).
44. Lewallen S, Bakker H, Taylor TE, Wills BA, Courtright P, Molyneux ME. Retinal findings predictive of outcome in cerebral malaria. Trans R Soc Trop Med Hyg 1996; 90: 144-146. MEDLINE | CrossRef
45. Lewallen S, White VA, Whitten RO, et al. Clinical-histopathological correlation of the abnormal retinal vessels in cerebral malaria. Arch Ophthalmol 2000; 118: 924-928. MEDLINE
46. Krishna S, Waller DW, ter Kuile F, et al. Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance. Trans R Soc Trop Med Hyg 1994; 88: 67-73. MEDLINE | CrossRef
47. Maitland K, Levin M, English M, et al. Severe P falciparum malaria in Kenyan children: evidence for hypovolaemia. Q J Med 2003; 96: 427-434.
48. Maitland K, Pamba A, Newton CR, Levin M. Response to volume resuscitation in children with severe malaria. Pediatr Crit Care Med 2003; 4: 426-431. MEDLINE
49. Sowunmi A, Newton CR, Waruiru C, Lightman S, Dunger DB. Arginine vasopressin secretion in Kenyan children with severe malaria. J Trop Pediatr 2000; 46: 195-199. MEDLINE | CrossRef
50. Berkley J, Mwarumba S, Bramham K, Lowe B, Marsh K. Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg 1999; 93: 283-286. MEDLINE | CrossRef
51. Enwere G, Van Hensbroek MB, Adegbola R, et al. Bacteraemia in cerebral malaria. Ann Trop Paediatr 1998; 18: 275-278. MEDLINE
52. Looareesuwan S, Warrell DA, White NJ, et al. Retinal hemorrhage, a common sign of prognostic significance in cerebral malaria. Am J Trop Med Hyg 1983; 32: 911-915. MEDLINE
53. Krishna S, Taylor AM, Supanaranond W, et al. Thiamine deficiency and malaria in adults from southeast Asia. Lancet 1999; 353: 546-549. Abstract | Full Text | PDF (80 KB) | MEDLINE | CrossRef
54. Cordoliani YS, Sarrazin JL, Felten D, Caumes E, Leveque C, Fisch A. MR of cerebral malaria. AJNR Am J Neuroradiol 1998; 19: 871-874. MEDLINE
55. Krishnan A, Karnad DR, Limaye U, Siddharth W. Cerebral venous and dural sinus thrombosis in severe falciparum malaria. J Infect 2004; 48: 86-90. MEDLINE | CrossRef
56. Tran TH, Day NP, Nguyen HP, et al. A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med 1996; 335: 76-83. MEDLINE | CrossRef
57. Lalloo DG, Trevett AJ, Paul M, et al. Severe and complicated falciparum malaria in Melanesian adults in Papua New Guinea. Am J Trop Med Hyg 1996; 55: 119-124. MEDLINE
58. Trang TT, Phu NH, Vinh H, et al. Acute renal failure in patients with severe falciparum malaria. Clin Infect Dis 1992; 15: 874-880. MEDLINE
59. Bruneel F, Hocqueloux L, Alberti C, et al. The clinical spectrum of severe imported falciparum malaria in the intensive care unit: report of 188 cases in adults. Am J Respir Crit Care Med 2003; 167: 684-689. MEDLINE | CrossRef
60. Ha V, Nguyen NH, Tran TB, et al. Severe and complicated malaria treated with artemisinin, artesunate or artemether in Viet Nam. Trans R Soc Trop Med Hyg 1997; 91: 465-467. MEDLINE | CrossRef
61. Barcus MJ, Hien TT, White NJ, et al. Short report: Hepatitis B infection and severe Plasmodium falciparum malaria in Vietnamese adults. Am J Trop Med Hyg 2002; 66: 140-142. MEDLINE
62. Rubio JM, Buhigas I, Subirats M, Baquero M, Puente S, Benito A. Limited level of accuracy provided by available rapid diagnosis tests for malaria enhances the need for PCR-based reference laboratories. J Clin Microbiol 2001; 39: 2736-2737. MEDLINE | CrossRef
63. Farnert A, Arez AP, Babiker HA, et al. Genotyping of Plasmodium falciparum infections by PCR: a comparative multicentre study. Trans R Soc Trop Med Hyg 2001; 95: 225-232. MEDLINE | CrossRef
64. Taylor TE, Fu WJ, Carr RA, et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 2004; 10: 143-145. MEDLINE | CrossRef
65. White NJ. Lumbar puncture in cerebral malaria. Lancet 1991; 338: 640-641. MEDLINE | CrossRef
66. Das BS, Mohanty S, Mishra SK, et al. Increased cerebrospinal fluid protein and lipid peroxidation products in patients with cerebral malaria. Trans R Soc Trop Med Hyg 1991; 85: 733-734. MEDLINE | CrossRef
67. Looareesuwan S, Wilairatana P, Krishna S, et al. Magnetic resonance imaging of the brain in patients with cerebral malaria. Clin Infect Dis 1995; 21: 300-309. MEDLINE
68. Newbold C, Craig A, Kyes S, Rowe A, Fernandez-Reyes D, Fagan T. Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol 1999; 29: 927-937. MEDLINE | CrossRef
69. Fernandez V, Wahlgren M. Rosetting and autoagglutination in Plasmodium falciparum. Chem Immunol 2002; 80: 163-187. MEDLINE
70. Pain A, Ferguson DJ, Kai O, et al. Platelet-meated clumping of Plasmodium falciparum?infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci USA 2001; 98: 1805-1810. MEDLINE | CrossRef
71. Dondorp AM, Pongponratn E, White NJ. Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 2004; 89: 309-317. MEDLINE | CrossRef
72. Idro R. Severe anaemia in childhood cerebral malaria is associated with profound coma. Afr Health Sci 2003; 3: 15-18. MEDLINE
73. Sanni LA. The role of cerebral oedema in the pathogenesis of cerebral malaria. Redox Rep 2001; 6: 137-142. MEDLINE | CrossRef
74. Newton CR, Marsh K, Peshu N, Kirkham FJ. Perturbations of cerebral hemodynamics in Kenyans with cerebral malaria. Pediatr Neurol 1996; 15: 41-49. Abstract | Abstract + References | PDF (999 KB) | MEDLINE | CrossRef
75. Maitland K, Pamba A, English M, et al. Randomized trial of volume expansion with albumin or saline in children with severe malaria: preliminary evidence of albumin benefit. Clin Infect Dis 2005; 40: 538-545. CrossRef
76. Brown H, Rogerson S, Taylor T, et al. Blood-brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg 2001; 64: 207-213. MEDLINE
77. Brown HC, Chau TT, Mai NT, et al. Blood-brain barrier function in cerebral malaria and CNS infections in Vietnam. Neurology 2000; 55: 104-111. MEDLINE
78. Pongponratn E, Riganti M, Harinasuta T, Bunnag D. Electron microscopy of the human brain in cerebral malaria. Southeast Asian J Trop Med Public Health 1985; 16: 219-227.
79. SenGupta SK, Naraqi S. The brain in cerebral malaria: a pathological study of 24 fatal cases in Papua New Guinea. P N G Med J 1992; 35: 270-274. MEDLINE
80. Walker O, Salako LA, Sowunmi A, Thomas JO, Sodeine O, Bondi FS. Prognostic risk factors and post mortem findings in cerebral malaria in children. Trans R Soc Trop Med Hyg 1992; 86: 491-493. MEDLINE | CrossRef
81. Clark IA, Rockett KA, Cowden WB. Possible central role of nitric oxide in conditions clinically similar to cerebral malaria. Lancet 1992; 340: 894-896. MEDLINE | CrossRef
82. Sanni LA, Fu S, Dean RT, et al. Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria?. J Infect Dis 1999; 179: 217-222. MEDLINE | CrossRef
83. Griffiths MJ, Ndungu F, Baird KL, Muller DP, Marsh K, Newton CR. Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 2001; 113: 486-491. MEDLINE | CrossRef
84. Dobbie M, Crawley J, Waruiru C, Marsh K, Surtees R. Cerebrospinal fluid studies in children with cerebral malaria: an excitotoxic mechanism?. Am J Trop Med Hyg 2000; 62: 284-290. MEDLINE
85. Medana IM, Hien TT, Day NP, et al. The clinical significance of cerebrospinal fluid levels of kynurenine pathway metabolites and lactate in severe malaria. J Infect Dis 2002; 185: 650-656. MEDLINE | CrossRef
86. Medana IM, Day NP, Salahifar-Sabet H, et al. Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J Infect Dis 2003; 188: 844-849. MEDLINE | CrossRef
87. Bate CA, Kwiatkowski D. Inhibitory immunoglobulin M antibodies to tumor necrosis factor-inducing toxins in patients with malaria. Infect Immun 1994; 62: 3086-3091. MEDLINE
88. Meyer-Breiting E, Zimmermann H. A contribution to the intravascular coagulation in cerebral malaria (author's transl). Zentralbl Allg Pathol 1975; 119: 286-293. MEDLINE
89. Aikawa M, Brown A, Smith CD, et al. A primate model for human cerebral malaria: Plasmodium coatneyi-infected rhesus monkeys. Am J Trop Med Hyg 1992; 46: 391-397. MEDLINE
90. Kawai S, Aikawa M, Kano S, Suzuki M. A primate model for severe human malaria with cerebral involvement: Plasmodium coatneyi-infected Macaca fuscata. Am J Trop Med Hyg 1993; 48: 630-636. MEDLINE
91. Neill AL, Hunt NH. Effects of endotoxin and dexamethasone on cerebral malaria in mice. Parasitology 1995; 111: 443-454.
92. Roberts DJ, Craig AG, Berendt AR, et al. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 1992; 357: 689-692. MEDLINE | CrossRef
93. Bull PC, Kortok M, Kai O, et al. Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J Infect Dis 2000; 182: 252-259. MEDLINE | CrossRef
94. Lindenthal C, Kremsner PG, Klinkert MQ. Commonly recognised Plasmodium falciparum parasites cause cerebral malaria. Parasitol Res 2003; 91: 363-368. MEDLINE | CrossRef
95. Craig A, Scherf A. Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 2001; 115: 129-143. MEDLINE | CrossRef
96. Newbold C, Warn P, Black G, et al. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg 1997; 57: 389-398. MEDLINE
97. Berendt AR, Simmons DL, Tansey J, Newbold CI, Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 1989; 341: 57-59. MEDLINE | CrossRef
98. Silamut K, Phu NH, Whitty C, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 1999; 155: 395-410. MEDLINE
99. Turner GD, Morrison H, Jones M, et al. An immunohistochemical study of the pathology of fatal malaria: evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 1994; 145: 1057-1069. MEDLINE
100. Craig A, Fernandez-Reyes D, Mesri M, et al. A functional analysis of a natural variant of intercellular adhesion molecule-1 (ICAM-1 Kilifi). Hum Mol Genet 2000; 9: 525-530. MEDLINE | CrossRef
101. Fernandez-Reyes D, Craig AG, Kyes SA, et al. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum Mol Genet 1997; 6: 1357-1360. MEDLINE | CrossRef
102. Bellamy R, Kwiatkowski D, Hill AV. Absence of an association between intercellular adhesion molecule 1, complement receptor 1 and interleukin 1 receptor antagonist gene polymorphisms and severe malaria in a West African population. Trans R Soc Trop Med Hyg 1998; 92: 312-316. MEDLINE | CrossRef
103. Dondorp AM, Angus BJ, Hardeman MR, et al. Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. Am J Trop Med Hyg 1997; 57: 507-511. MEDLINE
104. Dondorp AM, Nyanoti M, Kager PA, Mithwani S, Vreeken J, Marsh K. The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion. Trans R Soc Trop Med Hyg 2002; 96: 282-286. MEDLINE | CrossRef
105. Lyke KE, Burges R, Cissoko Y, et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 2004; 72: 5630-5637. MEDLINE
106. Kwiatkowski D. Tumour necrosis factor, fever and fatality in falciparum malaria. Immunol Lett 1990; 25: 213-216. MEDLINE
107. Akanmori BD, Kurtzhals JA, Goka BQ, et al. Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria. Eur Cytokine Netw 2000; 11: 113-118. MEDLINE
108. Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D. Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci 2003; 60: 1623-1635. MEDLINE
109. McGuire W, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 1994; 371: 508-510. MEDLINE
110. Day NP, Hien TT, Schollaardt T, et al. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J Infect Dis 1999; 180: 1288-1297. MEDLINE
111. Brown H, Turner G, Rogerson S, et al. Cytokine expression in the brain in human cerebral malaria. J Infect Dis 1999; 180: 1742-1746. MEDLINE
112. Clark IA, Awburn MM, Whitten RO, et al. Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malar J 2003; 2: 6.
113. Anstey NM, Weinberg JB, Hassanali MY, et al. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 1996; 184: 557-567. MEDLINE
114. Cramer JP, Nussler AK, Ehrhardt S, et al. Age-dependent effect of plasma nitric oxide on parasite density in Ghanaian children with severe malaria. Trop Med Int Health 2005; 10: 672-680. MEDLINE
115. Clark IA, Alleva LM, Mills AC, Cowden WB. Pathogenesis of Malaria and clinically similar conditions. Clin Microbiol Rev 2004; 17: 509-539. MEDLINE
116. Gitau EN, Newton CR. Review Article: Blood-brain barrier in falciparum malaria. Trop Med Int Health 2005; 10: 285-292. MEDLINE
117. Warrell DA, Looareesuwan S, Phillips RE, et al. Function of the blood-cerebrospinal fluid barrier in human cerebral malaria: rejection of the permeability hypothesis. Am J Trop Med Hyg 1986; 35: 882-889. MEDLINE
118. Brown H, Hien TT, Day N, et al. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 1999; 25: 331-340. MEDLINE
119. Adams S, Brown H, Turner G. Breaking down the blood-brain barrier: signaling a path to cerebral malaria?. Trends Parasitol 2002; 18: 360-366. MEDLINE
120. Patankar TF, Karnad DR, Shetty PG, Desai AP, Prasad SR. Adult cerebral malaria: prognostic importance of imaging findings and correlation with postmortem findings. Radiology 2002; 224: 811-816. MEDLINE
121. Looareesuwan S, Warrell DA, White NJ, et al. Do patients with cerebral malaria have cerebral oedema: a computed tomography study. Lancet 1983; 1: 434-437. MEDLINE
122. Pongponratn E, Turner GD, Day NP, et al. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 2003; 69: 345-359. MEDLINE
123. Turner G. Cerebral malaria. Brain Pathol 1997; 7: 569-582. MEDLINE
124. Patnaik JK, Das BS, Mishra SK, Mohanty S, Satpathy SK, Mohanty D. Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am J Trop Med Hyg 1994; 51: 642-647. MEDLINE
125. Medana IM, Day NP, Hien TT, et al. Axonal injury in cerebral malaria. Am J Pathol 2002; 160: 655-666. MEDLINE
126. Medana IM, Lindert RB, Wurster U, et al. Cerebrospinal fluid levels of markers of brain parenchymal damage in Vietnamese adults with severe malaria. Trans R Soc Trop Med Hyg 2005; 99: 610-617. MEDLINE
127. Jaffar S, Van Hensbroek MB, Palmer A, Schneider G, Greenwood B. Predictors of a fatal outcome following childhood cerebral malaria. Am J Trop Med Hyg 1997; 57: 20-24. MEDLINE
128. Phu NH, Hien TT, Mai NT, et al. Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. N Engl J Med 2002; 347: 895-902.
129. Carter JA, Mung'ala-Odera V, Neville BG, et al. Persistent neurocognitive impairments associated with severe falciparum malaria in Kenyan children. J Neurol Neurosurg Psychiatry 2005; 76: 476-481. MEDLINE
130. Carter JA, Neville BG, White S, et al. Increased prevalence of epilepsy associated with severe falciparum malaria in children. Epilepsia 2004; 45: 978-981. MEDLINE
131. Muntendam AH, Jaffar S, Bleichrodt N, van Hensbroek MB. Absence of neuropsychological sequelae following cerebral malaria in Gambian children. Trans R Soc Trop Med Hyg 1996; 90: 391-394. MEDLINE
132. Boivin MJ. Effects of early cerebral malaria on cognitive ability in Senegalese children. J Dev Behav Pediatr 2002; 23: 353-364. MEDLINE
133. Dugbartey AT, Spellacy FJ, Dugbartey MT. Somatosensory discrimination deficits following pediatric cerebral malaria. Am J Trop Med Hyg 1998; 59: 393-396. MEDLINE
134. Carter JA, Ross AJ, Neville BG, et al. Developmental impairments following severe falciparum malaria in children. Trop Med Int Health 2005; 10: 3-10. MEDLINE
135. Nguyen TH, Day NP, Ly VC, et al. Post-malaria neurological syndrome. Lancet 1996; 348: 917-921. Abstract | Full Text | PDF (41 KB) | MEDLINE
136. White NJLS. Cerebral malaria. London: Butterworths, 1987:.
137. Kastl AJ, Daroff RB, Blocker WW. Psychological testing of cerebral malaria patients. J Nerv Ment Dis 1968; 147: 553-561. MEDLINE
138. Varney NR, Roberts RJ, Springer JA, Connell SK, Wood PS. Neuropsychiatric sequelae of cerebral malaria in Vietnam veterans. J Nerv Ment Dis 1997; 185: 695-703. MEDLINE
139. Dugbartey AT, Dugbartey MT, Apedo MY. Delayed neuropsychiatric effects of malaria in Ghana. J Nerv Ment Dis 1998; 186: 183-186. MEDLINE
140. Maitland K, Nadel S, Pollard AJ, Williams TN, Newton CR, Levin M. Management of severe malaria in children: proposed guidelines for the United Kingdom. Bmj 2005; 331: 337-343.
141. Winstanley PA, Mberu EK, Watkins WM, Murphy SA, Lowe B, Marsh K. Towards optimal regimens of parenteral quinine for young African children with cerebral malaria: unbound quinine concentrations following a simple loading dose regimen. Trans R Soc Trop Med Hyg 1994; 88: 577-580. MEDLINE
142. Aceng JR, Byarugaba JS, Tumwine JK. Rectal artemether versus intravenous quinine for the treatment of cerebral malaria in children in Uganda: randomised clinical trial. BMJ 2005; 330: 334.
143. Waller D, Krishna S, Craddock C, et al. The pharmacokinetic properties of intramuscular quinine in Gambian children with severe falciparum malaria. Trans R Soc Trop Med Hyg 1990; 84: 488-491. MEDLINE
144. Riddle MS, Jackson JL, Sanders JW, Blazes DL. Exchange transfusion as an adjunct therapy in severe Plasmodium falciparum malaria: a meta-analysis. Clin Infect Dis 2002; 34: 1192-1198.
145. van der Torn M, Thuma PE, Mabeza GF, et al. Loading dose of quinine in African children with cerebral malaria. Trans R Soc Trop Med Hyg 1998; 92: 325-331. MEDLINE
146. Pasvol G, Newton CR, Winstanley PA, et al. Quinine treatment of severe falciparum malaria in African children: a randomized comparison of three regimens. Am J Trop Med Hyg 1991; 45: 702-713. MEDLINE
147. Stauffer W, Fischer PR. Diagnosis and treatment of malaria in children. Clin Infect Dis 2003; 37: 1340-1348.
148. Barennes H, Munjakazi J, Verdier F, Clavier F, Pussard E. An open randomized clinical study of intrarectal versus infused Quinimax for the treatment of childhood cerebral malaria in Niger. Trans R Soc Trop Med Hyg 1998; 92: 437-440. MEDLINE
149. Looareesuwan S, Phillips RE, White NJ, et al. Quinine and severe falciparum malaria in late pregnancy. Lancet 1985; 2: 4-8. MEDLINE
150. A meta-analysis using individual patient data of trials comparing artemether with quinine in the treatment of severe falciparum malaria. Trans R Soc Trop Med Hyg 2001; 95: 637-650. MEDLINE
151. Dondorp A, Nosten F, Stepniewska K, Day N, White N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 2005; 366: 717-725. Abstract | Full Text | PDF (107 KB)
152. Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N. Artesunate combinations for treatment of malaria: meta-analysis. Lancet 2004; 363: 9-17. Abstract | Full Text | PDF (115 KB)
153. Petras JM, Young GD, Bauman RA, et al. Arteether-induced brain injury in Macaca mulatta I: the precerebellar nuclei: the lateral reticular nuclei, paramedian reticular nuclei, and perihypoglossal nuclei. Anat Embryol (Berl) 2000; 201: 383-397. MEDLINE
154. Hien TT, Turner GD, Mai NT, et al. Neuropathological assessment of artemether-treated severe malaria. Lancet 2003; 362: 295-296. Abstract | Full Text | PDF (61 KB)
155. Di Perri G, Di Perri IG, Monteiro GB, et al. Pentoxifylline as a supportive agent in the treatment of cerebral malaria in children. J Infect Dis 1995; 171: 1317-1322. MEDLINE
156. Winstanley PA, Newton CR, Pasvol G, et al. Prophylactic phenobarbitone in young children with severe falciparum malaria: pharmacokinetics and clinical effects. Br J Clin Pharmacol 1992; 33: 149-154. MEDLINE
157. Crawley J, Waruiru C, Mithwani S, et al. Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study. Lancet 2000; 355: 701-706. Abstract | Full Text | PDF (114 KB) | MEDLINE
158. White NJ, Looareesuwan S, Phillips RE, Chanthavanich P, Warrell DA. Single dose phenobarbitone prevents convulsions in cerebral malaria. Lancet 1988; 2: 64-66. MEDLINE
159. Agbenyega T, Planche T, Bedu-Addo G, et al. Population kinetics, efficacy, and safety of dichloroacetate for lactic acidosis due to severe malaria in children. J Clin Pharmacol 2003; 43: 386-396. MEDLINE
160. Lengeler C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2004; 2: CD000363.
Back to top
<!--end tail-->Affiliations
a. Centre for Geographic Medicine Research-Coast, Kenya Medical Research Insitute, Kilifi, Kenya
b. Department of Paediatrics and Child Health, Mulago Hospital/Makerere University Medical School, Kampala, Uganda
c. Department of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre, Amsterdam, The Netherlands
d. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
e. Neurosciences Unit, Institute of Child Health, London, UK
Correspondence to: Dr Richard Idro, Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute, PO Box 230, Kilifi (80108), Kenya
</TD></TR></TBODY></TABLE><!--start eln:enhanced-links=--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--end eln:enhanced-links--><!--start hsp:referedArticles=--><!--start hsp:summaryCollection=--><!--end hsp:summaryCollection--><!--end hsp:referedArticles-->
DOI:10.1016/S1474-4422(05)70247-7
Pathogenesis, clinical features, and neurological outcome of cerebral malaria
Dr Richard IdroMMED a b c , Neil E JenkinsMRCP a d and Charles RJC NewtonMD a e
Summary
Introduction
Epidemiology and immunity
Clinical features of cerebral malaria
Diagnosis
Pathogenesis
Outcome of cerebral malaria
Management of cerebral malaria
Areas for research
Search strategy and selection criteria
References
Summary
Cerebral malaria is the most severe neurological complication of Plasmodium falciparum malaria. Even though this type of malaria is most common in children living in sub-Saharan Africa, it should be considered in anybody with impaired consciousness that has recently travelled in a malaria-endemic area. Cerebral malaria has few specific features, but there are differences in clinical presentation between African children and non-immune adults. Subsequent neurological impairments are also most common and severe in children. Sequestration of infected erythrocytes within cerebral blood vessels seems to be an essential component of the pathogenesis. However, other factors such as convulsions, acidosis, or hypoglycaemia can impair consciousness. In this review, we describe the clinical features and epidemiology of cerebral malaria. We highlight recent insights provided by ex-vivo work on sequestration and examination of pathological specimens. We also summarise recent studies of persisting neurocognitive impairments in children who survive cerebral malaria and suggest areas for further research.
Back to top
Introduction
Cerebral malaria is the most severe neurological complication of infection with Plasmodium falciparum and is a major cause of acute non-traumatic encephalopathy in tropical countries (panel 1). Mortality is high and over the past two decades the extent of persistent neurocognitive deficits after recovery has become apparent. In this paper, we review work that has provided further understanding of the pathogenesis and describe the long-term neurocognitive outcomes of cerebral malaria.
Panel 1: Cerebral malaria in clinical practice Diagnosis
Suspect cerebral malaria in any patient with impaired consciousness in a malaria-endemic region or recent travel to such areas.
Examine thick and thin peripheral blood smears for P falciparum malaria parasites.
Exclude other causes for encephalopathy (determine blood sugar concentrations to exclude hypoglycaemia, examine cerebrospinal fluid to exclude acute bacterial meningitis).
Mangement
Control seizures, correct hypoglycaemia, hypoxia, shock, and anaemia.
Give recommended antimalaria drugs in that region.
Assess for evidence of neurological damage (visual, speech, hearing, and motor deficits) before discharge.
Back to top
Epidemiology and immunity
In 2002, there were 515 million cases of malaria in the world; 25% in southeast Asia and 70% in Africa, mostly sub-Saharan Africa.1 In most developed countries, malaria is seen in immigrants or people returning from travels in malaria-endemic areas. In the UK there were 1722 cases of malaria in 2003.2
In sub-Saharan Africa, children are most commonly affected, such that malaria may account for 40% of paediatric admissions to some hospitals, 10% of which may be due to cerebral malaria.3 The incidence of cerebral malaria in malaria-endemic areas of sub-Saharan Africa is 1?12 cases per/1000 children per year,4 with a mortality of 18?6%.5P falciparum malaria can cause other complications, such as severe anaemia, acidosis or hypoglycaemia, and several complications can occur in a single patient.
Severe malaria in young children in malaria-endemic areas is dependent on age and level of transmission (ie, number of infected mosquito bites per person per year). In areas of intense transmission, infection and clinical disease are rare in children up to age 6 months, symptoms are mild as a result of passive immunity from maternal antibodies. In these areas, the main burden of disease is in infants in the first 2 years of their lives, and by age 4 years clinical disease is rare and typically mild.6 In areas with less intense transmission, the peak incidence of severe disease falls at a later age; severe anaemia is most common in infants younger than age 2 years and the peak incidence of cerebral malaria is later; the cause of this age-related difference is unclear. Repeated infections over several years provide protection against disease. Partial immunity develops but declines in the absence of continuous exposure; although partial protective immunity was reported in Africans who had been resident in France for at least 4 years.7
Back to top
Clinical features of cerebral malaria
WHO proposed a definition of cerebral malaria as a clinical syndrome characterised by coma (inability to localise a painful stimulus) at least 1 h after termination of a seizure or correction of hypoglycaemia, detection of asexual forms of P falciparum malaria parasites on peripheral blood smears, and exclusion of other causes of encephalopathy.8 This definition is particularly useful for comparisons of different areas and studies; it is used in children and adults, although, there are notable clinical differences (table 1)9?33 and it is not entirely clear if these differences are associated with immunity or age.
Click to view table
Table 1. Clinical features and outcomes of cerebral malaria in African children and southeast Asian adults
Clinical features of cerebral malaria in African children
Children who are admitted with cerebral malaria present with a 1?3 day history of fever, anorexia, vomiting, and sometimes coughing. The main neurological features are coma, seizures, and brainstem signs.9,23,30
Coma
Cerebral malaria is a diffuse encephalopathy characterised by coma and bilateral slowing on electroencephalography30,34 (figure 1). This type of malaria has many features similar to metabolic encephalopathy, such as presenting with abnormal pupillary signs and coma being potentially reversible. The cause of impaired consciousness is unclear but is likely to result from several interacting mechanisms. The depth of coma is an important prognostic factor.8,30
Click to enlarge image
Figure 1. Electroencephalography recordings in cerebral malaria Top: Electroencephalography recording in a Kenyan child with cerebral malaria showing diffuse high amplitude slow-wave activity more marked over the left hemisphere. Bottom: Electroencephalography recording in a Kenyan child with cerebral malaria showing electrical seizure activity (arrows) most prominent over the left temporal region (electroencephalography recordings taken by R Idro).
Seizures
Seizures are commonly reported in children with cerebral malaria and occur in over 60% after admission11,23,34,35 (table 1). Many patients with seizures are hypoxic and hypercarbic from hypoventilation and are at risk of aspiration.11,35?37 In a study with 65 Kenyan children, 40 (62%) had seizures after admission and ten (15%) had subtle seizures, manifesting as nystagmoid eye movements, irregular breathing, excessive salivation, and conjugate eye deviation.11 Seizures are often repetitive and prolonged, and 18 children (28%) had an episode of status epilepticus. Multiple and prolonged seizures are associated with increased mortality33,38,39 and neurocognitive deficits.35,40
The causes of seizures are unclear; most are not associated with fever at the time of the seizure.35 In children, seizures do not seem to result from electrolyte disorders41 or antimalarial drugs.34 Electroencephalography shows that many seizures originate over the temporoparietal regions (a watershed area; figure 1), suggesting that ischaemia and hypoxia may play a part.34 Seizures might be caused by sequestration of infected erythrocytes or parasite-derived toxins. Furthermore, immune mechanisms may be important, because children with severe malaria and seizures have high titres of antibodies to voltage gated calcium channels.42
Brainstem signs
Brainstem signs are common and are associated with other features of high intracranial pressure and brain swelling (figure 2), but may occur after seizures.15,16 These brainstem signs do not seem to be associated with hypoglycaemia or electrolyte disorders.15,16 Common signs include changes in pupillary size and reaction and disorders of conjugate gaze and eye movements. Absence of corneal and oculocephalic reflexes are associated with increased mortality.9 Other signs include abnormal respiratory patterns (such as hyperventilatory, ataxic, and periodic breathing),36 posture (decerebrate, decorticate, or opisthotonic posturing), and motor abnormalities of tone and reflexes.9,23 Abnormal motor posturing seems to be associated with raised intracranial pressure rather than seizures.43
Click to enlarge image
Figure 2. Radiological features of the brain in cerebral malaria Scan of the brain in a Kenyan child with cerebral malaria showing (A) swelling of the brain with compressed ventricles (arrow) and loss of sulci and (B) resolution of the brain swelling. A CT scan showing (C) brain swelling with diffuse hypodensity sparing the basal ganglia (arrows) and (D) convalescent scan in a child showing cerebral atrophy with infarction (arrows) of the right frontal and parietal regions. Reproduced with permission from the BMJ Publishing Group.31
Malarial retinopathy
Retinal abnormalities are common in children with cerebral malaria and may be related to pathological changes.17,44,45 Characteristic features include whitening of the macula (that spares the central fovea), peripheral retina, retinal vessels, papilloedema, and multiple retinal haemorrhages (often with pale centres; figure 3). These signs are best seen by indirect ophthalmoscopy and affect over 60% of children with cerebral malria;45 the specificity might help in the diagnosis of cerebral malaria. In Malawian children, the presence of retinopathy?particularly papilloedema?was associated with prolonged coma and death.17 In patients who recover, these features resolve over 1?4 weeks.
Click to enlarge image
Figure 3. Retinopathy of malaria White-centred retinal haemorrhage (A) and orange vessels in a Malawian child with cerebral malaria. Macula retinal whitening (B) around the foveola (central dark disc) in a child with cerebral malaria. Cotton wool spots are also visible superiotemporal to the optic disc. Vessel changes (C) in a Malawian child with cerebral malaria?from red to pale orange. Vessel changes (D) in a Malawian child with cerebral malaria?from red to white. Photographs courtesy of Dr Nicholas Beare, Malawi-Liverpool-Wellcome Trust Clinical Research Programme College of Medicine, Malawi.
Concomitant complications
Metabolic perturbations are common in children with cerebral malaria. Hypoglycaemia is present in up to a third of patients on admission and commonly recurs even after initial correction. Causes include depletion of glycogen stores, inadequate intake, impaired hepatic gluconeogenesis and quinine-induced hyperinsulinaemia.9,20,46 Metabolic acidosis presents as deep breathing and is commonly associated with hyperlactaemia; this may be caused by hypovolaemia and inadequate tissue perfusion, anaemia, lactate production by parasites, and cytokine-induced failure of oxygen utilisation.3,36,37,47 Resuscitation with fluids or blood transfusion can improve outcome.48 Many children with dehydration have transient impairment of renal function but, unlike in adults, overt renal failure is rare. Over 50% of patients have hyponatraemia,21 but the cause is unclear.21,49 Concomitant bacterial infections occur in 5?8% of children with cerebral malaria50,51 and leucocyte counts above 15000/μL are associated with poor prognosis.9 Other features include hepatomegaly, splenomegaly, and in some cases jaundice.
Back to top
Clinical features of cerebral malaria in adults
Cerebral malaria in adults is part of a multiorgan disease.30 After a few days of illness patients typically present with fever, malaise, headache, joint and body aches, anorexia, and delirium, and they then develop coma. Seizures are less common in southeast Asian adults compared with African children and the incidence seems to be declining generally.30
Encephalopathy in adults is characterised by symmetrical upper-neuron lesion signs. Patients can have dysconjugate eye deviation, extrapyramidal rigidity, trismus, and decorticate and decerebrate rigidity.10 Papilloedema and retinal exudates are rare, but 15% of patients have retinal haemorrhages which are associated with increased mortality.52 Recovery from coma is slower in adults than in children.31 Thiamine deficiency might contribute to some of these neurological symptoms.53 In a few patients, abnormalities such as cortical infarcts, cerebral venous thrombosis, or dural sinus thrombosis (figure 4)54,55 can happen as a consequence of the hypercoagulable state.
Click to enlarge image
Figure 4. Cerebral infarcts in adults with cerebral malaria Left: infarcts in a 36 year old man with cerebral malaria. Hyperintense cortical areas (infarcts) seen on a fast spin-echo T2 weighted MR image (arrow). Reproduced with permission from the American Society of Neuroradiology.54 Right: contrast enhanced brain CT scan of a 48 year old man who presented with left focal becoming generalised seizures and left hemiparesis. A large area of hemorrhagic infarction is seen in the right frontoparietal cortex with surrounding oedema. Absence of contrast is seen as a hypodense area in the posterior aspect of the superior sagittal sinus. Reproduced with permission from the British Infection Society.55
In some patients, cerebral malaria is complicated by pulmonary oedema or adult respiratory distress syndrome.13,56 Kussmaul's breathing occurs with acute renal failure and severe lactic acidosis.10,19 Other complications of P falciparum malaria such as anaemia, haemoglobinuria, jaundice, shock, and coagulation disorders have been reported.57?60 A high incidence of multiorgan failure is seen among those admitted to intensive care units, this is because mostly very ill patients who have not responded to treatment are admitted to these units.26 Bacterial co-infection is common, particularly in those with shock, and accounts for most late (after 7 days) deaths. Respiratory failure has the worst prognosis and develops late in the course of the illness.26 Chronic hepatitis B infection may be a risk factor for severe malaria, including cerebral malaria in adults.61
Back to top
Diagnosis
Cerebral malaria should be considered in the differential diagnosis of any patient who has a febrile illness with impaired consciousness who lives in or has recently travelled to malaria endemic areas. At least three negative blood smears (on microscopy) 8?12 h apart are required before the diagnosis can be excluded. Rapid tests, such as the immunochromatographic test for the histidine-rich protein 2 (from P falciparum) and lactate dehydrogenase can be helpful in the absence of positive blood smear, although, they do not give information about the parasite load and their sensitivity and specificity decreases at low parasitaemia.62 PCR tests are more sensitive than microscopy but expensive and do not give estimates of parasite load.63
In malaria-endemic areas, cerebral malaria is a diagnosis of exclusion. The high prevalence of asymptomatic parasitaemia in these areas makes accurate diagnosis less certain?almost any viral encephalopathy with incidental parasitaemia fulfils the diagnostic criteria for cerebral malaria. In a study by Taylor and colleagues,64 24% of Malawian children who fulfilled the criteria for cerebral malaria before death had evidence at post mortem of an alternative cause for coma, including Reye's syndrome, hepatic necrosis, and ruptured arteriovenous malformation. The presence of malarial retinopathy was the only clinical feature to distinguish patients with typical histopathological features of cerebral malaria from those with other illnesses. Lumbar puncture must be done to exclude other causes for encephalopathy, although there are differences of opinion about the timing of this procedure.16,65 There may be mild pleocytosis and high protein concentrations.66 High plasma and cerebrospinal fluid concentrations of lactate are associated with increased mortality.9,46 Over 40% of children with cerebral malaria have swollen brains18 (figure 2), but this finding is less common in adults.67
Back to top
Pathogenesis
In P falciparum infections, consciousness can be impaired by various mechanisms interacting with each other30 (panel 2).68?88 The relative contributions of these mechanisms may differ in children and adults. Thus, unlike in adults, seizures seem to be an important cause of impairment of consciousness in children.
Panel 2: Postulated mechanisms for coma in cerebral malaria Obstruction of cerebral microvascular flow
Parasite-induced sequestration of infected and unifected arythrocytes mediated through cytoadherence,68 rosette formation,69 autoagglutination69,70 and reduced red cell deformability.71
Seizures
Overt seizures11,35,37
Subtle and electrographic seizures11,37
Postictal state37
Impaired delivery of substrate
Hypoglycaemia9,23
Anaemia72
Hypoxia73
Impaired perfusion
Hypovolaemia47,74
Shock75
Acidosis75
Raised intracranial pressure and brain swelling
Disruption of the blood?brain barrier76,77
Raised intracranial pressure15,16,18
Cerebral oedema78?80
Cytotoxic oedema18,78
Toxins
Nitric oxide81
Reactive oxygen species82,83
Excitotoxins30,84?86
Malaria toxin87
Clotting
Intravascular coagulation as a minor mechanism88
Research strategies
The main strategies to study pathogenesis have been clinical case series and case-control studies, post-mortem surveys, in vitro studies, or animal models. However, there are no reliable animal models of cerebral malaria. Many primates naturally have plasmodium infections but rarely develop clinical features similar to human cerebral malaria. P falciparum does infect new-world monkeys, but severe symptoms are common only in splenectomised animals. Some species do develop cerebral dysfunction associated with adherence of infected erythrocytes to cerebral endothelial cells.89,90 Although coma is not a typical consequence of plasmodium infection in these primates, adherence of infected erythrocytes to cerebral endothelial cells has contributed to the understanding of parasite-induced sequestration.
Important research on cerebral malaria has been done with mice. The characteristics of the infection are dependent on the strains of mice and plasmodium. The most popular model is CBA mice infected with the ANKA strain of Plasmodium berghei.91 Coma, seizures, and death were reported, but unlike human cerebral malaria these could not be reversed or prevented with treatment. The pathology is different in mice, infected erythrocytes do not commonly sequester; instead, monocytes occur in cerebral vessels, and inflammatory cytokines are essential for the pathogenesis. However, monocytes are also seen in the cerebral vessels of some African children,64 but the importance of this finding is still unclear. The use of murine models, particularly gene knock-out strains, has provided much information on the immune and inflammatory responses to plasmodium infections.
Sequestration
A consistent histological finding in cerebral malaria in both children and adults is the presence of infected and non-infected erythrocytes packed within cerebral vessels (figure 5). Sequestration might happen as a consequence of cytoadherence of infected erythrocytes to endothelial cells via P falciparum derived proteins on the infected erythrocyte surface attaching to ligands upregulated in the venules. Sequestration can be increased when adherent infected erythrocytes bind other infected erythrocytes (autoagglutination) or non-infected erythrocytes (rosetting) or use platelets to bind other infected erythrocytes (platelet-mediated clumping). Not all parasites display these adhesive properties, but these phenotypes are most commonly present in infected erythrocytes taken from children and adults with severe malaria.
Click to enlarge image
Figure 5. Sequestration of infected erythrocytes in cerebral vessels Left: P falciparum infected erythrocytes sequestered in a cerebral vessel of a Vietnamese adult with fatal cerebral malaria (haematoxylin and eosin staining ?400. Courtesy of Dr Gareth Turner, Nuffield Department of Histopathology, John Radcliffe Hospital, Oxford. Middle: electron microscopy showing the ultrastructural details of a P falciparum IE adhering to an endothelial cell in vitro. P=parasite, En=endothelial cell and arrows point out the adhesion points at the electron dense knob proteins. Courtesy of Professor David Ferguson, Department of Clinical Laboratory Sciences, Oxford University. Right: freeze fracture electron micrograph of the infected erythrocyte surface revealing the symmetrical distribution of knob proteins on the surface. Courtesy of Professor David Ferguson, Department of Clinical Laboratory Sciences, Oxford University.
Parasite binding is mediated by a group of variant surface antigens expressed at the red-cell surface during development. The best described is P falciparum erythrocyte membrane protein-1 (PfEMP1) which is encoded by a family of about 60 variant genes associated with different binding phenotypes. Each parasite expresses the transcript of only one variant gene but can switch to express a different variant gene (about 2% per generation in vitro),92 and therefore display both a change in binding phenotype and antigen. Although the trigger for variant gene switching is unknown the rapid switching in non-immune volunteers does not support the role of immune pressure.93 Some variant surface antigens seem to be most common in young children with severe disease, and thus might be more capable of causing cerebral malaria than others,94 but whether this is the result of adhesion phenotype or host response is unclear.
PfEMP1 is able to bind to many host receptors on endothelial cells, chief among which are CD36 and the intercellular adhesion molecule 1 (ICAM1).95,96 The binding of infected erythrocytes to ICAM1 has been implicated in the pathogenesis of cerebral malaria.97 Post-mortem studies have revealed upregulation of ICAM1 expression on the cerebral vascular endothelium in cerebral malaria,79,98 which, in adults, was localised to areas of parasite-induced sequestration.99 A common ICAM1 polymorphism (ICAM1Kilifi) that changes protein binding to infected erythrocytes100 was associated with susceptibility to cerebral malaria in Kenyan children,101 but not in The Gambia.102 In a study describing the binding affinities of parasites taken from Kenyan children with malaria, ICAM1 binding was highest in those with cerebral malaria. However, we do not know how representative circulating parasites are of those sequestered within cerebral vessels and although ICAM1 seems important, many host receptors are likely involved in concert in the process resulting in cerebral malaria.
Reduction in microvascular flow
Sequestration of infected and non-infected erythrocytes within the cerebral vessels reduces the microvascular flow. In addition, the presence of parasites inside erythrocytes decreases the ability to deform (low red-cell deformability) so that erythrocytes have more difficulty in passing through the microvasculature. Studies of Thai adults103 and Kenyan children104 have found strong associations between low red-cell deformability and severe disease in adults with outcome. The rapid reversibility of clinical symptoms suggests that tissue necrosis is unlikely to occur. However, there may be a critical reduction in the supply of metabolic substrate to the brain. This will be exacerbated by increased demand during seizures and fever, and may be worse in patients with severe anaemia or hypoglycaemia.23,72 Cerebral blood flow may also be reduced by high intracranial pressure. Inflammatory cytokines can result in inefficient use of substrates.
Inflammatory response
P falciparum infection results in increases in both proinflammatory and anti-inflammatory cytokines. The balance of inflammatory mediators seems critical to parasite control, but their role in the pathogenesis of severe malaria is unclear. In Malian children, concentrations of both interleukin 6 (proinflammatory) and interleukin 10 (anti-inflammatory) were higher in patients with cerebral malaria than in those with non-cerebral malaria?but there was no increase in interleukin 1, interleukin 8, interleukin 12, or tumour necrosis factor.105 In Gambian and Ghanaian children, concentrations of tumour necrosis factor and its receptor were higher in those with cerebral malaria than in those with mild or uncomplicated malaria.106,107 Several polymorphisms in the tumour necrosis factor promoter region have also been associated with increased risk of cerebral malaria and death,108 or neurological sequelae.109 In Vietnamese adults, concentrations of interleukin 6, interleukin 10, and tumour necrosis factor were high in patients with severe multiorgan disease but were low in patients with cerebral malaria alone, suggesting their involvement in the process leading to severe malaria but not coma.110 Post-mortem analysis of Malawian children with cerebral malaria suggest increased local production of tumour necrosis factor and interleukin 1.111 However, there was no association between production or staining for these cytokines and sites of parasite sequestration.
Nitric oxide might be a key effector for tumour necrosis factor in the pathogenesis of malaria. Nitric oxide is involved in host defence by killing intracellular organisms, in maintenance of vascular status, and in neurotransmission. Cytokines may upregulate inducible nitric oxide synthase (iNOS) in brain endothelial cells, increasing production of nitric oxide, which diffuses into brain tissue and disrupts neuronal function.81 Nitric oxide may rapidly and reversibly reduce the level of consciousness81 because it is short-lived and can easily diffuse across the blood?brain barrier to interfere with neuronal function.
The associations found between disease and nitric oxide activity, iNOS, or genetic polymorphisms in the iNOS promoter gene have not been consistent. Results have varied with age, endemicity, and geographical location. Post-mortem staining of brain specimens in African children and southeast Asian adults have revealed increased iNOS in vessel walls associated with sequestered parasites in cerebral malaria,112 whereas in other studies, nitric oxide is associated with protection.113,114 Upregulation of iNOS by tumour necrosis factor may set off a negative feedback mechanism through nitric oxide to control the stimulatory action on iNOS. However, in some individuals, production of nitric oxide happens too slowly to downregulate the primary wave of tumour necrosis factor induction, so that a slow build up of iNOS-induced nitric oxide allows iNOS and nitric oxide to reach the harmful concentrations seen in cerebral malaria.115
Blood?brain-barrier function
Because parasites are largely confined to intravascular spaces, one main question regarding the pathogenesis of cerebral malaria is how these parasites cause neuronal dysfunction.116 There is growing evidence that parasite-induced sequestration of infected and uninfected erythrocytes changes blood?brain barrier function. In Thai adults, transfer of radioactively labelled albumin into cerebrospinal fluid was not raised during unconsciousness compared with convalescence.117 No significant changes were reported in the albumin index (ratio of concentrations of albumin in cerebrospinal fluid to those in blood) in Vietnamese adults.77 However, in Malawian children, albumin indices were significantly higher than in UK controls (adults dying from non-neurological or infectious causes),76 although, there were no differences between children who died and those who survived.
Post-mortem analysis has shown widespread cerebrovascular endothelial cell activation (increased ICAM1 endothelial staining, reduction in cell-junction staining, and disruption of junction proteins), particularly in vessels containing infected erythrocytes.118 Perivascular macrophages in these areas expressed scavenger receptor and sialoadhesin?normally expressed only after contact with plasma proteins. However, such disruption of intercellular junctions was not associated with significant leakage of plasma proteins (fibrinogen, IgG, or C5b-9) into perivascular areas or cerebrospinal fluid.76 Adams and colleagues119 suggested that ICAM1 binding by infected erythrocytes results in a cascade of intracellular signalling events that disrupt the cytoskeletal-cell junction structure and cause focal disruption to the blood?brain barrier. Focal disruptions in the barrier at sites of sequestration could result in the exposure of sensitive perivascular neuronal cells to plasma proteins and increased concentrations of cytokines and metabolites caused by abnormalities in microcirculation; this may contribute to reduced consciousness and seizure activity.
Brain swelling
In Kenyan children in deep coma, 40% had evidence of brain swelling on CT (figure 2); however, during recovery some children with severe encephalopathy had evidence of cytotoxic oedema, which can contribute to severe intracranial hypertension.18 Severe intracranial hypertension was associated with death or neurological sequelae.15 In a study of 21 Indian adults, abnormalities on CT scans were related to the Glasgow coma score and mortality.120 Cerebral oedema was seen in eight patients, two of whom died. Other studies of Thai adults have found little evidence of cerebral oedema on CT121 or MRI67 but documented brain swelling. Although no substantial leakage of plasma proteins has been reported,76 the blood?brain-barrier disruption can contribute to the high intracranial pressure reported in African children. However, the most likely cause of raised intracranial pressure is increased cerebral blood volume as a result of sequestration of infected erythrocytes and increased cerebral blood flow from seizures, hyperthermia, or anaemia.5,30
Pathological findings
Post-mortem studies have provided a wealth of detailed information but they reflect, at best, pathology at a single point after death in the most severely ill patients. Recent surveys from Malawi and southeast Asia have found a significant association between the amount of sequestration and ante-mortem diagnosis of cerebral malaria. Sequestration is extensive, occurring in all parts of the brain to a similar extent, but with substantial variability between individuals and between vessels in an individual.122 Brain swelling is common but evidence for frank herniation is rare in adults, although more common in children.80 Cut surfaces show petechial haemorrhages (figure 6).123 Electron microscopy shows knob-like protrusions on the surface of infected erythrocytes and at sites of attachment to vascular endothelium (figure 5).78 Studies in Malawian children show intravascular and perivascular pathological changes (haemorrhages, accumulation of pigmented white blood cells and thrombi) in 75% of cases. These are associated with high concentrations of extraerythrocytic haemozoin (a product of haemoglobin metabolism by malaria parasites) inside cerebral vessels. Thus, rupture of infected erythrocytes can lead to an inflammatory process within and around brain capillaries.64 These findings are not consistent in adults122,124 and may reflect differences between adults and children.
Click to enlarge image
Figure 6. Gross pathological appearance of the brain in cerebral malaria Macroscopic section of the brain from a fatal case of cerebral malaria showing petechial haemorrhages in white matter, particularly in the subcortical rim and corpus callosum. Reproduced with permission from International Society of Neuropathology.123
Amyloid-β precursor protein staining (a marker of axonal injury) was found on post-mortem brain specimens of adults with cerebral malaria.125 Two patterns were observed; a diffuse increase or a predominance of axonal injury in one brain region?typically the internal capsule or pons. Axonal injury correlated with plasma lactate, cerebrospinal fluid protein, and Glasgow coma score. Increased concentrations of the microtubule-associated protein tau (from degenerated axons)?but not neural cell body or astrocyte proteins in cerebrospinal fluid?suggested that most of the brain parenchymal damage is in axons.126 High concentrations of quinolinic acid were found in cerebrospinal fluid,84 but in Vietnamese adults this was related to impaired renal function.85
Back to top
Outcome of cerebral malaria
Most patients with cerebral malaria seem to make a full recovery, but neurocognitive sequelae have been increasingly recognised, particularly in African children in the past 20 years.
Mortality
The mortality rate in adults and children is about 20%, and most deaths happen within 24 h of admission, before antimalarial drugs may have had time to work. The mechanisms of death seem to vary (figure 7).
Click to enlarge image
Figure 7. Possible mechanisms for death and neuro-cognitive impairment in cerebral malaria and some areas for possible intervention (1) P falciparum infected erythrocytes adhere to the vascular endothelium and possibly sequester in large numbers in the brain. (2) Local and systemic changes produce significant vital organ dysfunction leading to severe metabolic derangement, which may result in death unless urgent correction (eg, correction of blood glucose, dialysis or ventilation) is initiated. (3) Sequestration of infected erythrocytes within the cerebral vessels increases the cerebral volume, which together with the increase in cerebral blood flow caused by seizures, anaemia, and hyperthermia (4), and the altered blood?brain barrier function lead to brain swelling and raised intracranial pressure (ICP; 5). This may cause death (through global cerebral ischaemia, transtentorial herniation or brainstem compression) or result in neuronal damage with consequent neuro-cognitive impairments. Sequestered parasites may also produce local toxins and ischaemia or influence the production of inflammatory products such as cytokines and result in multiple seizures and neuronal damage. Metabolic derangement is more common in adults whereas raised ICP and seizures are commoner in children. Possible areas for intervention are highlighted.
In African children, most deaths occur with brainstem signs after a respiratory arrest (initially with a good cardiac output), suggestive of transtentorial herniation or cardiorespiratory arrest in association with severe metabolic acidosis. Four of seven children in Nigeria had cerebral oedema or features of herniation at autopsy.80 Mortality is high among children with shock, hypoglycaemia, multiple and prolonged seizures, deep coma, or severe acidosis.9,23,127
Many adults die with renal failure or pulmonary oedema. Mortality is particularly high in pregnant patients or those with vital organ dysfunction.28,128 Patients can die with an acute respiratory arrest, commonly after a period of respiratory irregularity, but with a normal blood pressure. Others die with shock or hypoxia secondary to acute pulmonary oedema.
Neurocognitive deficits
In African children, a high incidence of neurological deficits (10?9%) was reported in a meta-analysis which used studies with a similar definition of cerebral malaria.5 Some deficits are transient (eg, ataxia), whereas others (eg, hemiparesis) improve over months but may not resolve completely. Children living in Africa with severe neurological sequelae (spastic quadriparesis and vegetative states) often die within a few months of discharge.129 Recent studies have reported that epilepsy is associated with cerebral malaria.130
Cognitive impairments have been described in some studies,39 but not in others.131 Impairment has been reported in a wide range of cognitive functions; memory, attention, executive functions and language.39,129,132?134 Neurocognitive impairments can be associated with protracted seizures,11,32,38 deep and prolonged coma,33 hypoglycaemia, and severe anaemia, but are not always.32,38 The consistent association found between prolonged seizures or hypoglycaemia and neurocognitive impairment suggest hippocampal damage, which can manifest as memory impairment and complex partial seizures at a later date. The development of impairments might be associated with pathophysiological processes, such as raised intracranial pressure.15 Most of these factors are also associated with death, and may simply reflect the severity of the underlying insult, rather than a specific neuropathogenic process. 24% of children have evidence of some impairments after cerebral malaria, so this represents a substantial burden in malaria-endemic areas, suggesting that at least 250000 children will develop neurocognitive impairments from malaria in sub-Saharan Africa each year.134
In non-immune adults, the prevalence (<5%) and severity of subsequent neurological impairments is less than in children. Impairments are not confined to cerebral malaria, but may follow non-cerebral malaria.135 They include cranial-nerve lesions, neuropathies, and extrapyramidal disorders.10,136 Some patients develop transient psychosis or delirium during recovery, whereas others develop focal epilepsy sometimes associated with transient tomographic opacities in the brain. In Vietnam, a self-limiting ?post-malaria neurological syndrome? consisting of acute confusional state, acute psychosis, generalised convulsions, or tremor occurred in 0?12% of patients with P falciparum malaria.135
Cognitive deficits after malaria in adults are not well documented. There are case reports of impairment of memory and naming ability. Psychological tests did not detect any residual defects in a small group of American soldiers after cerebral malaria,137 although a recent retrospective study suggests that cerebral malaria results in multiple neuropsychiatric symptoms, including poor dichotic listening, personality change, depression, and in some cases partial-seizure-like symptoms.138 A study of Ghanaian adults suggested that subclinical mixed anxiety?depression syndrome can occur after P falciparum malaria.139
Back to top
Management of cerebral malaria
WHO has developed guidelines for management of patients with cerebral malaria8 and new guidelines were recently proposed for the UK.140 Emergency management aims to rapidly correct severely deranged metabolic states, restoring vital physiological functions (panel 3), and the administration of an effective and rapidly active parasiticidal drug.
Panel 3: Emergency management and supportive care
?Maintain airway, give high-flow oxygen if hypoxaemic or respiratory distress
?Treat hypoglycaemia with a bolus infusion 2 mL/kg of 25% dextrose, monitor for recurrence
?Control seizures (benzodiazepines, paraldehyde, phenytoin, phenobarbital)
?Correct shock with normal saline, initial infusion of 20 mL/kg over 30 min
?Offer blood transfusion if haematocrit is <15% in children or <20% in adults
?Give fresh blood transfusion and vitamin K for spontaneous bleeding
?Give first-line antibiotics for pyogenic meningitis and bacterial sepsis until these are excluded
?Ventilate adults with pulmonary oedema and offer dialysis if in renal failure
Resuscitation on admission
Because most patients die within 24 h of admission before therapeutic benefits of antimalaria drugs,5 supportive therapy might improve outcome. Treatment of hypoxaemia, hypoglycaemia, shock, severe metabolic acidosis, and seizures is important. Urgent resuscitation with fluids might be required for those with hypovolaemia,22,47,48,140 although fluids should be given carefully. The administration of albumin reduced mortality in a small trial in children with cerebral malaria,75 but trials to confirm this finding are still needed. Whole-blood or packed-cell transfusions should be given for severe anaemia. Recurrences of hypoglycaemia can be prevented by continuous infusion of fluids containing glucose until consciousness is regained.
Antimalarial therapy
Cinchona alkaloids (quinine, quinidine, and cinchonine) and artemisinin derivatives (artesunate, artemether and arteether) are recommended for cerebral malaria (table 2).5,8,141?145 Cinchona alkaloids take effect during the later stages of parasite development, whereas artemisinins are active at both early and late stages. A loading dose of either drug should be given to rapidly achieve antiparasiticidal concentrations.
Click to view table
Table 2. Antimalarial treatment of cerebral malaria
Quinine is still used extensively and can be given intravenously or intramuscularly. A loading dose is associated with faster clearance of parasitaemia and resolution of fever and coma.145 A 12 hourly dose regimen can be used in younger children.146 Quinidine is more toxic (especially cardiotoxicity) and expensive than quinine and a dose reduction might be necessary if the corrected QT interval is prolonged.147 In some parts of French-speaking Africa, quinimax (a combination of quinine, quinidine, cinchonine, and cinchonidine) is commonly used.148 The main side-effects of cinchona alkaloids are hyperinsulinaemic hypoglycaemia, and cinchonism (giddiness, tinnitus, high-tone deafness, and colour aberrations [in which patients see rings of colour around objects]). Although high doses of quinine can induce uterine contractions, normal therapeutic doses can be used safely in pregnancy.149 Doses of the cinchona alkaloids should be reduced by 30?50% if intravenous therapy is required beyond 3 days to avoid accumulation.
Artemisinin derivatives clear circulating parasites faster than other antimalarial drugs,150 and adults treated with artesunate have a lower mortality than those treated with quinine.151 The artemisinin derivatives should be used in combination with other antimalarial drugs to prevent resistance. Side-effects are not common152 and artemisinin derivatives are easier to give than cinchonoids. Studies with mice show that parenteral artemether and arteether (artemotil) are associated with damage to brainstem nuclei,153 but no evidence of these neurotoxic effects have been detected in human beings.154 Rectal preparations may be useful in rural health facilities.142
Supportive therapy
Ventilation and dialysis can be life saving in adults with pulmonary oedema or renal failure respectively. Children should receive antimicrobials to cover the possibility of bacterial infections until these can confidently be excluded by examination of cerebrospinal fluid, blood, and urine.8 Exchange transfusion has been recommended for non-immune adult patients with parasite densities >30% as it reduces parasitaemia and improves red-cell flow, but there is no conclusive evidence that it reduces mortality.143
Therapies with deleterious or unproven value
Several other adjunct therapies have been tested but as yet remain unproven.8 Steroids are deleterious, whereas acetyl-salicylic acid, sodium bicarbonate, and heparin can be harmful. Desferoxamine and dextran have unclear roles. Hyperimmune serum confers no benefit, whereas, monoclonal antibodies to tumour necrosis factor were associated with a worse neurological outcome. Although pentoxifylline was associated with early resolution of coma and low mortality in Burundian children, no benefit was reported in other studies.155 Mannitol reduces intracranial hypertension but such decreases are neither sustained nor does it prevent the development of severe intracranial hypertension.15 Prophylactic phenobarbital (10 mg/kg) did not control seizures,156 20 mg/kg phenobarbital was associated with increased mortality in unventilated Kenyan children157 but in Thai adults a single intramuscular injection of 3?5 mg/kg prevented convulsions.158 Dichloroacetate, an activator of pyruvate dehydrogenase, reduces blood concentrations of lactic-acid, but clinical trials are needed to assess how it affects outcome.159
Back to top
Areas for research
Prevention of malaria is a priority and the widespread use of preventive measures such as insecticide-treated materials can reduce all childhood deaths by 20%.160 Together with prompt treatment of fever with effective antimalarial drugs, these interventions can reverse rising mortality as a result of malaria in Africa. Basic research continues to explore vaccines as an ideal preventive instrument for malaria. There is no vaccine against infection because of the complexity of parasite biology. Insights into the processes leading to cerebral malaria might identify targets for a vaccine that allows infection and the acquisition of immunity, but prevents cerebral malaria.
Further definition of the phenotype of cerebral malaria would help provide insights into the pathogenesis, in particular the associations with genetic polymorphisms. A robust exclusion of other causes of encephalopathies in patients presenting with coma and a peripheral parasitaemia in endemic areas would reduce the contamination effect of these disorders on the pathogenesis and outcome of studies of cerebral malaria. Careful documentation of retinal findings may be particularly important.
There are technical difficulties in the study of subtle cerebral processes in comatose patients. The development of a reliable animal or in-vitro model may provide further insights. The technology exists to refine the murine model by inserting human genes (transgenics) into the mouse genome to allow the replacement of murine proteins with human ones. Infection of these models with P falciparum would recreate the key clinical and pathological processes.
Most deaths happen before antimalarials have had time to kill the parasites. In addition to addressing public-health problems resulting in delayed presentation to hospital and ensuring children receive prompt and appropriate resuscitation, new interventions that address pathophysiological processes causing these early deaths is a priority.
The scale of neurocognitive impairment reflects an enormous socioeconomic burden in resource-poor countries. Research is needed to clearly define the patients at risk and identify risk factors for persistent impairments. MRI, particularly of African children during acute illness and on recovery can provide insights into the pathogenesis of the neurocognitive damage. Interventions to prevent brain damage and rehabilitation programmes for those with neurocognitive impairments are needed. Such interventions might include; development of neuroprotective drugs, improvement in prophylactic anticonvulsant regimens, treatment of raised intracranial pressure in children, or correction of changes in brain (figure 7).
Back to top
Search strategy and selection criteria
Data for this review were identified by searches of PubMed and references derived from author lists from January 1965 to September 2005. The search terms used were ?cerebral malaria?, ?pathophysiology?, ?outcome?, and ?therapy?. Abstracts and reports from meetings were not used. We included some articles not published in English that had abstracts in English providing pertinent information unavailable from English-language publications. The final reference list was generated from papers that were relevant to this review.
Back to top
Authors' contributions
All authors contributed equally to reviewing the data and writing the paper.
Conflicts of interest
We have no conflicts of interest.
Acknowledgments
Two of the authors were supported by The Wellcome Trust, UK (CRJCN, grant number 070114 and NEJ, grant number GR066684MF).
Back to top
<!--start tail=-->References
1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434: 214-217. CrossRef
2. Health-Protection-Agency. Malaria imported into UK, 2003: implications for those advising travellers. CDR Wkly 2004; 18-23.
3. Marsh K, Forster D, Waruiru C, et al. Indicators of life-threatening malaria in African children. N Engl J Med 1995; 332: 1399-1404. MEDLINE | CrossRef
4. Snow RW, Craig MH, Newton CRJC, Steketee RW. The public health burden of Plasmodium falciparum malaria in Africa: deriving the numbers. Working Paper No. 11. Disease Control Priorities Project. Bethesda, MD: Fogarty International Center, National Institutes of Health, August 2003:
http://www.cdc.gov/malaria/pdf/snow_wp11.pdf
(accessed Nov 2, 2005).
5. Newton CR, Krishna S. Severe falciparum malaria in children: current understanding of pathophysiology and supportive treatment. Pharmacol Ther 1998; 79: 1-53. MEDLINE | CrossRef
6. Reyburn H, Mbatia R, Drakeley C, et al. Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. JAMA 2005; 293: 1461-1470. CrossRef
7. Bouchaud O, Cot M, Kony S, et al. Do African immigrants living in france have long-term malarial immunity?. Am J Trop Med Hyg 2005; 72: 21-25. MEDLINE
8. WHO. Severe falciparum malaria. Trans R Soc Trop Med Hyg 2000; 94 (suppl 1): 1-90. MEDLINE | CrossRef
9. Molyneux ME, Taylor TE, Wirima JJ, Borgstein A. Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Q J Med 1989; 71: 441-459. MEDLINE
10. Kochar DK, Shubhakaran, Kumawat BL, et al. Cerebral malaria in Indian adults: a prospective study of 441 patients from Bikaner, north-west India. J Assoc Physicians India 2002; 50: 234-241. MEDLINE
11. Crawley J, Smith S, Kirkham F, Muthinji P, Waruiru C, Marsh K. Seizures and status epilepticus in childhood cerebral malaria. Q J Med 1996; 89: 591-597.
12. Warrell DA. Cerebral malaria: clinical features, pathophysiology and treatment. Ann Trop Med Parasitol 1997; 91: 875-884. MEDLINE | CrossRef
13. Aursudkij B, Wilairatana P, Vannaphan S, Walsh DS, Gordeux VR, Looareesuwan S. Pulmonary edema in cerebral malaria patients in Thailand. Southeast Asian J Trop Med Public Health 1998; 29: 541-545.
14. Nacher M, Treeprasertsuk S, Singhasivanon P, et al. Association of hepatomegaly and jaundice with acute renal failure but not with cerebral malaria in severe falciparum malaria in Thailand. Am J Trop Med Hyg 2001; 65: 828-833. MEDLINE
15. Newton CR, Crawley J, Sowumni A, et al. Intracranial hypertension in Africans with cerebral malaria. Arch Dis Child 1997; 76: 219-226.
16. Newton CR, Kirkham FJ, Winstanley PA, et al. Intracranial pressure in African children with cerebral malaria. Lancet 1991; 337: 573-576. MEDLINE | CrossRef
17. Beare NA, Southern C, Chalira C, Taylor TE, Molyneux ME, Harding SP. Prognostic significance and course of retinopathy in children with severe malaria. Arch Ophthalmol 2004; 122: 1141-1147. MEDLINE | CrossRef
18. Newton CR, Peshu N, Kendall B, et al. Brain swelling and ischaemia in Kenyans with cerebral malaria. Arch Dis Child 1994; 70: 281-287.
19. Garg RK, Karak B, Misra S. Neurological manifestations of malaria: an update. Neurol India 1999; 47: 85-91. MEDLINE
20. English M, Wale S, Binns G, Mwangi I, Sauerwein H, Marsh K. Hypoglycaemia on and after admission in Kenyan children with severe malaria. Q J Med 1998; 91: 191-197.
21. English MC, Waruiru C, Lightowler C, Murphy SA, Kirigha G, Marsh K. Hyponatraemia and dehydration in severe malaria. Arch Dis Child 1996; 74: 201-205.
22. English M, Sauerwein R, Waruiru C, et al. Acidosis in severe childhood malaria. Q J Med 1997; 90: 263-270.
23. Idro R, Karamagi C, Tumwine J. Immediate outcome and prognostic factors for cerebral malaria among children admitted to Mulago Hospital, Uganda. Ann Trop Paediatr 2004; 24: 17-24. MEDLINE | CrossRef
24. Waller D, Krishna S, Crawley J, et al. Clinical features and outcome of severe malaria in Gambian children. Clin Infect Dis 1995; 21: 577-587. MEDLINE
25. Maitland K, Pamba A, Newton CR, Lowe B, Levin M. Hypokalemia in children with severe falciparum malaria. Pediatr Crit Care Med 2004; 5: 81-85. MEDLINE | CrossRef
26. Krishnan A, Karnad DR. Severe falciparum malaria: an important cause of multiple organ failure in Indian intensive care unit patients. Crit Care Med 2003; 31: 2278-2284. MEDLINE
27. Faiz MA, Rahman MR, Hossain MA, Rashid HA. Cerebral malaria: a study of 104 cases. Bangladesh Med Res Counc Bull 1998; 24: 35-42. MEDLINE
28. Day NP, Phu NH, Mai NT, et al. The pathophysiologic and prognostic significance of acidosis in severe adult malaria. Crit Care Med 2000; 28: 1833-1840. MEDLINE
29. White NJ, Warrell DA, Chanthavanich P, et al. Severe hypoglycemia and hyperinsulinemia in falciparum malaria. N Engl J Med 1983; 309: 61-66. MEDLINE
30. Newton CR, Hien TT, White N. Cerebral malaria. J Neurol Neurosurg Psychiatry 2000; 69: 433-441. MEDLINE | CrossRef
31. Mohanty S, Mishra SK, Pati SS, Pattnaik J, Das BS. Complications and mortality patterns due to Plasmodium falciparum malaria in hospitalized adults and children, Rourkela, Orissa, India. Trans R Soc Trop Med Hyg 2003; 97: 69-70. MEDLINE | CrossRef
32. Bondi FS. The incidence and outcome of neurological abnormalities in childhood cerebral malaria: a long-term follow-up of 62 survivors. Trans R Soc Trop Med Hyg 1992; 86: 17-19. MEDLINE | CrossRef
33. van Hensbroek MB, Palmer A, Jaffar S, Schneider G, Kwiatkowski D. Residual neurologic sequelae after childhood cerebral malaria. J Pediatr 1997; 131: 125-129. Abstract | Full Text | PDF (1591 KB) | MEDLINE | CrossRef
34. Crawley J, Smith S, Muthinji P, Marsh K, Kirkham F. Electroencephalographic and clinical features of cerebral malaria. Arch Dis Child 2001; 84: 247-253. CrossRef
35. Waruiru CM, Newton CR, Forster D, et al. Epileptic seizures and malaria in Kenyan children. Trans R Soc Trop Med Hyg 1996; 90: 152-155. MEDLINE | CrossRef
36. Crawley J, English M, Waruiru C, Mwangi I, Marsh K. Abnormal respiratory patterns in childhood cerebral malaria. Trans R Soc Trop Med Hyg 1998; 92: 305-308. MEDLINE | CrossRef
37. Marsh K, English M, Crawley J, Peshu N. The pathogenesis of severe malaria in African children. Ann Trop Med Parasitol 1996; 90: 395-402. MEDLINE
38. Brewster DR, Kwiatkowski D, White NJ. Neurological sequelae of cerebral malaria in children. Lancet 1990; 336: 1039-1043. MEDLINE | CrossRef
39. Holding PA, Stevenson J, Peshu N, Marsh K. Cognitive sequelae of severe malaria with impaired consciousness. R Soc Trop Med Hyg 1999; 93: 529-534.
40. Akpede GO, Sykes RM, Abiodun PO. Convulsions with malaria: febrile or indicative of cerebral involvement?. J Trop Pediatr 1993; 39: 350-355. MEDLINE
41. Crawley J, Kokwaro G, Ouma D, Watkins W, Marsh K. Chloroquine is not a risk factor for seizures in childhood cerebral malaria. Trop Med Int Health 2000; 5: 860-864. MEDLINE | CrossRef
42. Lang B, Newbold CI, Williams G, Peshu N, Marsh K, Newton CR. Antibodies to voltage-gated calcium channels in children with falciparum malaria. J Infect Dis 2005; 191: 117-121. MEDLINE | CrossRef
43. Idro R, Otieno G, White S, et al. Decorticate, decerebrate and opisthotonic posturing and seizures in Kenyan children with cerebral malaria. Malar J 2005; (in press).
44. Lewallen S, Bakker H, Taylor TE, Wills BA, Courtright P, Molyneux ME. Retinal findings predictive of outcome in cerebral malaria. Trans R Soc Trop Med Hyg 1996; 90: 144-146. MEDLINE | CrossRef
45. Lewallen S, White VA, Whitten RO, et al. Clinical-histopathological correlation of the abnormal retinal vessels in cerebral malaria. Arch Ophthalmol 2000; 118: 924-928. MEDLINE
46. Krishna S, Waller DW, ter Kuile F, et al. Lactic acidosis and hypoglycaemia in children with severe malaria: pathophysiological and prognostic significance. Trans R Soc Trop Med Hyg 1994; 88: 67-73. MEDLINE | CrossRef
47. Maitland K, Levin M, English M, et al. Severe P falciparum malaria in Kenyan children: evidence for hypovolaemia. Q J Med 2003; 96: 427-434.
48. Maitland K, Pamba A, Newton CR, Levin M. Response to volume resuscitation in children with severe malaria. Pediatr Crit Care Med 2003; 4: 426-431. MEDLINE
49. Sowunmi A, Newton CR, Waruiru C, Lightman S, Dunger DB. Arginine vasopressin secretion in Kenyan children with severe malaria. J Trop Pediatr 2000; 46: 195-199. MEDLINE | CrossRef
50. Berkley J, Mwarumba S, Bramham K, Lowe B, Marsh K. Bacteraemia complicating severe malaria in children. Trans R Soc Trop Med Hyg 1999; 93: 283-286. MEDLINE | CrossRef
51. Enwere G, Van Hensbroek MB, Adegbola R, et al. Bacteraemia in cerebral malaria. Ann Trop Paediatr 1998; 18: 275-278. MEDLINE
52. Looareesuwan S, Warrell DA, White NJ, et al. Retinal hemorrhage, a common sign of prognostic significance in cerebral malaria. Am J Trop Med Hyg 1983; 32: 911-915. MEDLINE
53. Krishna S, Taylor AM, Supanaranond W, et al. Thiamine deficiency and malaria in adults from southeast Asia. Lancet 1999; 353: 546-549. Abstract | Full Text | PDF (80 KB) | MEDLINE | CrossRef
54. Cordoliani YS, Sarrazin JL, Felten D, Caumes E, Leveque C, Fisch A. MR of cerebral malaria. AJNR Am J Neuroradiol 1998; 19: 871-874. MEDLINE
55. Krishnan A, Karnad DR, Limaye U, Siddharth W. Cerebral venous and dural sinus thrombosis in severe falciparum malaria. J Infect 2004; 48: 86-90. MEDLINE | CrossRef
56. Tran TH, Day NP, Nguyen HP, et al. A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med 1996; 335: 76-83. MEDLINE | CrossRef
57. Lalloo DG, Trevett AJ, Paul M, et al. Severe and complicated falciparum malaria in Melanesian adults in Papua New Guinea. Am J Trop Med Hyg 1996; 55: 119-124. MEDLINE
58. Trang TT, Phu NH, Vinh H, et al. Acute renal failure in patients with severe falciparum malaria. Clin Infect Dis 1992; 15: 874-880. MEDLINE
59. Bruneel F, Hocqueloux L, Alberti C, et al. The clinical spectrum of severe imported falciparum malaria in the intensive care unit: report of 188 cases in adults. Am J Respir Crit Care Med 2003; 167: 684-689. MEDLINE | CrossRef
60. Ha V, Nguyen NH, Tran TB, et al. Severe and complicated malaria treated with artemisinin, artesunate or artemether in Viet Nam. Trans R Soc Trop Med Hyg 1997; 91: 465-467. MEDLINE | CrossRef
61. Barcus MJ, Hien TT, White NJ, et al. Short report: Hepatitis B infection and severe Plasmodium falciparum malaria in Vietnamese adults. Am J Trop Med Hyg 2002; 66: 140-142. MEDLINE
62. Rubio JM, Buhigas I, Subirats M, Baquero M, Puente S, Benito A. Limited level of accuracy provided by available rapid diagnosis tests for malaria enhances the need for PCR-based reference laboratories. J Clin Microbiol 2001; 39: 2736-2737. MEDLINE | CrossRef
63. Farnert A, Arez AP, Babiker HA, et al. Genotyping of Plasmodium falciparum infections by PCR: a comparative multicentre study. Trans R Soc Trop Med Hyg 2001; 95: 225-232. MEDLINE | CrossRef
64. Taylor TE, Fu WJ, Carr RA, et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med 2004; 10: 143-145. MEDLINE | CrossRef
65. White NJ. Lumbar puncture in cerebral malaria. Lancet 1991; 338: 640-641. MEDLINE | CrossRef
66. Das BS, Mohanty S, Mishra SK, et al. Increased cerebrospinal fluid protein and lipid peroxidation products in patients with cerebral malaria. Trans R Soc Trop Med Hyg 1991; 85: 733-734. MEDLINE | CrossRef
67. Looareesuwan S, Wilairatana P, Krishna S, et al. Magnetic resonance imaging of the brain in patients with cerebral malaria. Clin Infect Dis 1995; 21: 300-309. MEDLINE
68. Newbold C, Craig A, Kyes S, Rowe A, Fernandez-Reyes D, Fagan T. Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int J Parasitol 1999; 29: 927-937. MEDLINE | CrossRef
69. Fernandez V, Wahlgren M. Rosetting and autoagglutination in Plasmodium falciparum. Chem Immunol 2002; 80: 163-187. MEDLINE
70. Pain A, Ferguson DJ, Kai O, et al. Platelet-meated clumping of Plasmodium falciparum?infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci USA 2001; 98: 1805-1810. MEDLINE | CrossRef
71. Dondorp AM, Pongponratn E, White NJ. Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 2004; 89: 309-317. MEDLINE | CrossRef
72. Idro R. Severe anaemia in childhood cerebral malaria is associated with profound coma. Afr Health Sci 2003; 3: 15-18. MEDLINE
73. Sanni LA. The role of cerebral oedema in the pathogenesis of cerebral malaria. Redox Rep 2001; 6: 137-142. MEDLINE | CrossRef
74. Newton CR, Marsh K, Peshu N, Kirkham FJ. Perturbations of cerebral hemodynamics in Kenyans with cerebral malaria. Pediatr Neurol 1996; 15: 41-49. Abstract | Abstract + References | PDF (999 KB) | MEDLINE | CrossRef
75. Maitland K, Pamba A, English M, et al. Randomized trial of volume expansion with albumin or saline in children with severe malaria: preliminary evidence of albumin benefit. Clin Infect Dis 2005; 40: 538-545. CrossRef
76. Brown H, Rogerson S, Taylor T, et al. Blood-brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg 2001; 64: 207-213. MEDLINE
77. Brown HC, Chau TT, Mai NT, et al. Blood-brain barrier function in cerebral malaria and CNS infections in Vietnam. Neurology 2000; 55: 104-111. MEDLINE
78. Pongponratn E, Riganti M, Harinasuta T, Bunnag D. Electron microscopy of the human brain in cerebral malaria. Southeast Asian J Trop Med Public Health 1985; 16: 219-227.
79. SenGupta SK, Naraqi S. The brain in cerebral malaria: a pathological study of 24 fatal cases in Papua New Guinea. P N G Med J 1992; 35: 270-274. MEDLINE
80. Walker O, Salako LA, Sowunmi A, Thomas JO, Sodeine O, Bondi FS. Prognostic risk factors and post mortem findings in cerebral malaria in children. Trans R Soc Trop Med Hyg 1992; 86: 491-493. MEDLINE | CrossRef
81. Clark IA, Rockett KA, Cowden WB. Possible central role of nitric oxide in conditions clinically similar to cerebral malaria. Lancet 1992; 340: 894-896. MEDLINE | CrossRef
82. Sanni LA, Fu S, Dean RT, et al. Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria?. J Infect Dis 1999; 179: 217-222. MEDLINE | CrossRef
83. Griffiths MJ, Ndungu F, Baird KL, Muller DP, Marsh K, Newton CR. Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br J Haematol 2001; 113: 486-491. MEDLINE | CrossRef
84. Dobbie M, Crawley J, Waruiru C, Marsh K, Surtees R. Cerebrospinal fluid studies in children with cerebral malaria: an excitotoxic mechanism?. Am J Trop Med Hyg 2000; 62: 284-290. MEDLINE
85. Medana IM, Hien TT, Day NP, et al. The clinical significance of cerebrospinal fluid levels of kynurenine pathway metabolites and lactate in severe malaria. J Infect Dis 2002; 185: 650-656. MEDLINE | CrossRef
86. Medana IM, Day NP, Salahifar-Sabet H, et al. Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J Infect Dis 2003; 188: 844-849. MEDLINE | CrossRef
87. Bate CA, Kwiatkowski D. Inhibitory immunoglobulin M antibodies to tumor necrosis factor-inducing toxins in patients with malaria. Infect Immun 1994; 62: 3086-3091. MEDLINE
88. Meyer-Breiting E, Zimmermann H. A contribution to the intravascular coagulation in cerebral malaria (author's transl). Zentralbl Allg Pathol 1975; 119: 286-293. MEDLINE
89. Aikawa M, Brown A, Smith CD, et al. A primate model for human cerebral malaria: Plasmodium coatneyi-infected rhesus monkeys. Am J Trop Med Hyg 1992; 46: 391-397. MEDLINE
90. Kawai S, Aikawa M, Kano S, Suzuki M. A primate model for severe human malaria with cerebral involvement: Plasmodium coatneyi-infected Macaca fuscata. Am J Trop Med Hyg 1993; 48: 630-636. MEDLINE
91. Neill AL, Hunt NH. Effects of endotoxin and dexamethasone on cerebral malaria in mice. Parasitology 1995; 111: 443-454.
92. Roberts DJ, Craig AG, Berendt AR, et al. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 1992; 357: 689-692. MEDLINE | CrossRef
93. Bull PC, Kortok M, Kai O, et al. Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J Infect Dis 2000; 182: 252-259. MEDLINE | CrossRef
94. Lindenthal C, Kremsner PG, Klinkert MQ. Commonly recognised Plasmodium falciparum parasites cause cerebral malaria. Parasitol Res 2003; 91: 363-368. MEDLINE | CrossRef
95. Craig A, Scherf A. Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 2001; 115: 129-143. MEDLINE | CrossRef
96. Newbold C, Warn P, Black G, et al. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am J Trop Med Hyg 1997; 57: 389-398. MEDLINE
97. Berendt AR, Simmons DL, Tansey J, Newbold CI, Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 1989; 341: 57-59. MEDLINE | CrossRef
98. Silamut K, Phu NH, Whitty C, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol 1999; 155: 395-410. MEDLINE
99. Turner GD, Morrison H, Jones M, et al. An immunohistochemical study of the pathology of fatal malaria: evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 1994; 145: 1057-1069. MEDLINE
100. Craig A, Fernandez-Reyes D, Mesri M, et al. A functional analysis of a natural variant of intercellular adhesion molecule-1 (ICAM-1 Kilifi). Hum Mol Genet 2000; 9: 525-530. MEDLINE | CrossRef
101. Fernandez-Reyes D, Craig AG, Kyes SA, et al. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum Mol Genet 1997; 6: 1357-1360. MEDLINE | CrossRef
102. Bellamy R, Kwiatkowski D, Hill AV. Absence of an association between intercellular adhesion molecule 1, complement receptor 1 and interleukin 1 receptor antagonist gene polymorphisms and severe malaria in a West African population. Trans R Soc Trop Med Hyg 1998; 92: 312-316. MEDLINE | CrossRef
103. Dondorp AM, Angus BJ, Hardeman MR, et al. Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. Am J Trop Med Hyg 1997; 57: 507-511. MEDLINE
104. Dondorp AM, Nyanoti M, Kager PA, Mithwani S, Vreeken J, Marsh K. The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion. Trans R Soc Trop Med Hyg 2002; 96: 282-286. MEDLINE | CrossRef
105. Lyke KE, Burges R, Cissoko Y, et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 2004; 72: 5630-5637. MEDLINE
106. Kwiatkowski D. Tumour necrosis factor, fever and fatality in falciparum malaria. Immunol Lett 1990; 25: 213-216. MEDLINE
107. Akanmori BD, Kurtzhals JA, Goka BQ, et al. Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria. Eur Cytokine Netw 2000; 11: 113-118. MEDLINE
108. Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D. Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci 2003; 60: 1623-1635. MEDLINE
109. McGuire W, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 1994; 371: 508-510. MEDLINE
110. Day NP, Hien TT, Schollaardt T, et al. The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J Infect Dis 1999; 180: 1288-1297. MEDLINE
111. Brown H, Turner G, Rogerson S, et al. Cytokine expression in the brain in human cerebral malaria. J Infect Dis 1999; 180: 1742-1746. MEDLINE
112. Clark IA, Awburn MM, Whitten RO, et al. Tissue distribution of migration inhibitory factor and inducible nitric oxide synthase in falciparum malaria and sepsis in African children. Malar J 2003; 2: 6.
113. Anstey NM, Weinberg JB, Hassanali MY, et al. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 1996; 184: 557-567. MEDLINE
114. Cramer JP, Nussler AK, Ehrhardt S, et al. Age-dependent effect of plasma nitric oxide on parasite density in Ghanaian children with severe malaria. Trop Med Int Health 2005; 10: 672-680. MEDLINE
115. Clark IA, Alleva LM, Mills AC, Cowden WB. Pathogenesis of Malaria and clinically similar conditions. Clin Microbiol Rev 2004; 17: 509-539. MEDLINE
116. Gitau EN, Newton CR. Review Article: Blood-brain barrier in falciparum malaria. Trop Med Int Health 2005; 10: 285-292. MEDLINE
117. Warrell DA, Looareesuwan S, Phillips RE, et al. Function of the blood-cerebrospinal fluid barrier in human cerebral malaria: rejection of the permeability hypothesis. Am J Trop Med Hyg 1986; 35: 882-889. MEDLINE
118. Brown H, Hien TT, Day N, et al. Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 1999; 25: 331-340. MEDLINE
119. Adams S, Brown H, Turner G. Breaking down the blood-brain barrier: signaling a path to cerebral malaria?. Trends Parasitol 2002; 18: 360-366. MEDLINE
120. Patankar TF, Karnad DR, Shetty PG, Desai AP, Prasad SR. Adult cerebral malaria: prognostic importance of imaging findings and correlation with postmortem findings. Radiology 2002; 224: 811-816. MEDLINE
121. Looareesuwan S, Warrell DA, White NJ, et al. Do patients with cerebral malaria have cerebral oedema: a computed tomography study. Lancet 1983; 1: 434-437. MEDLINE
122. Pongponratn E, Turner GD, Day NP, et al. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 2003; 69: 345-359. MEDLINE
123. Turner G. Cerebral malaria. Brain Pathol 1997; 7: 569-582. MEDLINE
124. Patnaik JK, Das BS, Mishra SK, Mohanty S, Satpathy SK, Mohanty D. Vascular clogging, mononuclear cell margination, and enhanced vascular permeability in the pathogenesis of human cerebral malaria. Am J Trop Med Hyg 1994; 51: 642-647. MEDLINE
125. Medana IM, Day NP, Hien TT, et al. Axonal injury in cerebral malaria. Am J Pathol 2002; 160: 655-666. MEDLINE
126. Medana IM, Lindert RB, Wurster U, et al. Cerebrospinal fluid levels of markers of brain parenchymal damage in Vietnamese adults with severe malaria. Trans R Soc Trop Med Hyg 2005; 99: 610-617. MEDLINE
127. Jaffar S, Van Hensbroek MB, Palmer A, Schneider G, Greenwood B. Predictors of a fatal outcome following childhood cerebral malaria. Am J Trop Med Hyg 1997; 57: 20-24. MEDLINE
128. Phu NH, Hien TT, Mai NT, et al. Hemofiltration and peritoneal dialysis in infection-associated acute renal failure in Vietnam. N Engl J Med 2002; 347: 895-902.
129. Carter JA, Mung'ala-Odera V, Neville BG, et al. Persistent neurocognitive impairments associated with severe falciparum malaria in Kenyan children. J Neurol Neurosurg Psychiatry 2005; 76: 476-481. MEDLINE
130. Carter JA, Neville BG, White S, et al. Increased prevalence of epilepsy associated with severe falciparum malaria in children. Epilepsia 2004; 45: 978-981. MEDLINE
131. Muntendam AH, Jaffar S, Bleichrodt N, van Hensbroek MB. Absence of neuropsychological sequelae following cerebral malaria in Gambian children. Trans R Soc Trop Med Hyg 1996; 90: 391-394. MEDLINE
132. Boivin MJ. Effects of early cerebral malaria on cognitive ability in Senegalese children. J Dev Behav Pediatr 2002; 23: 353-364. MEDLINE
133. Dugbartey AT, Spellacy FJ, Dugbartey MT. Somatosensory discrimination deficits following pediatric cerebral malaria. Am J Trop Med Hyg 1998; 59: 393-396. MEDLINE
134. Carter JA, Ross AJ, Neville BG, et al. Developmental impairments following severe falciparum malaria in children. Trop Med Int Health 2005; 10: 3-10. MEDLINE
135. Nguyen TH, Day NP, Ly VC, et al. Post-malaria neurological syndrome. Lancet 1996; 348: 917-921. Abstract | Full Text | PDF (41 KB) | MEDLINE
136. White NJLS. Cerebral malaria. London: Butterworths, 1987:.
137. Kastl AJ, Daroff RB, Blocker WW. Psychological testing of cerebral malaria patients. J Nerv Ment Dis 1968; 147: 553-561. MEDLINE
138. Varney NR, Roberts RJ, Springer JA, Connell SK, Wood PS. Neuropsychiatric sequelae of cerebral malaria in Vietnam veterans. J Nerv Ment Dis 1997; 185: 695-703. MEDLINE
139. Dugbartey AT, Dugbartey MT, Apedo MY. Delayed neuropsychiatric effects of malaria in Ghana. J Nerv Ment Dis 1998; 186: 183-186. MEDLINE
140. Maitland K, Nadel S, Pollard AJ, Williams TN, Newton CR, Levin M. Management of severe malaria in children: proposed guidelines for the United Kingdom. Bmj 2005; 331: 337-343.
141. Winstanley PA, Mberu EK, Watkins WM, Murphy SA, Lowe B, Marsh K. Towards optimal regimens of parenteral quinine for young African children with cerebral malaria: unbound quinine concentrations following a simple loading dose regimen. Trans R Soc Trop Med Hyg 1994; 88: 577-580. MEDLINE
142. Aceng JR, Byarugaba JS, Tumwine JK. Rectal artemether versus intravenous quinine for the treatment of cerebral malaria in children in Uganda: randomised clinical trial. BMJ 2005; 330: 334.
143. Waller D, Krishna S, Craddock C, et al. The pharmacokinetic properties of intramuscular quinine in Gambian children with severe falciparum malaria. Trans R Soc Trop Med Hyg 1990; 84: 488-491. MEDLINE
144. Riddle MS, Jackson JL, Sanders JW, Blazes DL. Exchange transfusion as an adjunct therapy in severe Plasmodium falciparum malaria: a meta-analysis. Clin Infect Dis 2002; 34: 1192-1198.
145. van der Torn M, Thuma PE, Mabeza GF, et al. Loading dose of quinine in African children with cerebral malaria. Trans R Soc Trop Med Hyg 1998; 92: 325-331. MEDLINE
146. Pasvol G, Newton CR, Winstanley PA, et al. Quinine treatment of severe falciparum malaria in African children: a randomized comparison of three regimens. Am J Trop Med Hyg 1991; 45: 702-713. MEDLINE
147. Stauffer W, Fischer PR. Diagnosis and treatment of malaria in children. Clin Infect Dis 2003; 37: 1340-1348.
148. Barennes H, Munjakazi J, Verdier F, Clavier F, Pussard E. An open randomized clinical study of intrarectal versus infused Quinimax for the treatment of childhood cerebral malaria in Niger. Trans R Soc Trop Med Hyg 1998; 92: 437-440. MEDLINE
149. Looareesuwan S, Phillips RE, White NJ, et al. Quinine and severe falciparum malaria in late pregnancy. Lancet 1985; 2: 4-8. MEDLINE
150. A meta-analysis using individual patient data of trials comparing artemether with quinine in the treatment of severe falciparum malaria. Trans R Soc Trop Med Hyg 2001; 95: 637-650. MEDLINE
151. Dondorp A, Nosten F, Stepniewska K, Day N, White N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 2005; 366: 717-725. Abstract | Full Text | PDF (107 KB)
152. Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N. Artesunate combinations for treatment of malaria: meta-analysis. Lancet 2004; 363: 9-17. Abstract | Full Text | PDF (115 KB)
153. Petras JM, Young GD, Bauman RA, et al. Arteether-induced brain injury in Macaca mulatta I: the precerebellar nuclei: the lateral reticular nuclei, paramedian reticular nuclei, and perihypoglossal nuclei. Anat Embryol (Berl) 2000; 201: 383-397. MEDLINE
154. Hien TT, Turner GD, Mai NT, et al. Neuropathological assessment of artemether-treated severe malaria. Lancet 2003; 362: 295-296. Abstract | Full Text | PDF (61 KB)
155. Di Perri G, Di Perri IG, Monteiro GB, et al. Pentoxifylline as a supportive agent in the treatment of cerebral malaria in children. J Infect Dis 1995; 171: 1317-1322. MEDLINE
156. Winstanley PA, Newton CR, Pasvol G, et al. Prophylactic phenobarbitone in young children with severe falciparum malaria: pharmacokinetics and clinical effects. Br J Clin Pharmacol 1992; 33: 149-154. MEDLINE
157. Crawley J, Waruiru C, Mithwani S, et al. Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study. Lancet 2000; 355: 701-706. Abstract | Full Text | PDF (114 KB) | MEDLINE
158. White NJ, Looareesuwan S, Phillips RE, Chanthavanich P, Warrell DA. Single dose phenobarbitone prevents convulsions in cerebral malaria. Lancet 1988; 2: 64-66. MEDLINE
159. Agbenyega T, Planche T, Bedu-Addo G, et al. Population kinetics, efficacy, and safety of dichloroacetate for lactic acidosis due to severe malaria in children. J Clin Pharmacol 2003; 43: 386-396. MEDLINE
160. Lengeler C. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2004; 2: CD000363.
Back to top
<!--end tail-->Affiliations
a. Centre for Geographic Medicine Research-Coast, Kenya Medical Research Insitute, Kilifi, Kenya
b. Department of Paediatrics and Child Health, Mulago Hospital/Makerere University Medical School, Kampala, Uganda
c. Department of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre, Amsterdam, The Netherlands
d. Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
e. Neurosciences Unit, Institute of Child Health, London, UK
Correspondence to: Dr Richard Idro, Centre for Geographic Medicine Research-Coast, Kenya Medical Research Institute, PO Box 230, Kilifi (80108), Kenya
</TD></TR></TBODY></TABLE><!--start eln:enhanced-links=--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--start eln:ref=--><!--start eln:link=--><!--end eln:link--><!--end eln:ref--><!--end eln:enhanced-links--><!--start hsp:referedArticles=--><!--start hsp:summaryCollection=--><!--end hsp:summaryCollection--><!--end hsp:referedArticles-->
Comment