Announcement

Collapse
No announcement yet.

Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • #16
    Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

    I have to go through this paper in more detail, but it appears to have set up a number of hoops that have been raised high, and ignores the jumping through lower hoops.

    The paper really focuses on "obvious" recombination and then throws out examples at the ends of the genes and is left with two examples, which have identity with earlier isolates. These are considered to be lab artifacts because the sequences are conserved over a long time period.

    The paper acknowledges the possibility of short regions of recombination, which would be missed by the analysis method used (and therefore doesn't address obvious recombination between H1N1 and H3N2 internal genes).

    The paper also does not address multiple recombination events over time, which would split recombined regions, as was demonstrated in the swine Nature Precedings paper, which the authors deem as "controversial".

    The paper does address the obvious examples of recombination in the swine sequences, which would be difficult to explain by lab error, because it would require multiple contaminants (two 1977 Tennessee swine, one 1997 North Carolina Swine, one 2002 Korean swine, and 1 1931 Iowa swine), just to explain the recombination in PB2 and PA.

    There are some obvious examples of recombination in a series of human south Korean HA sequences, which are also hard to explain by lab contamination. I am not sure why these sequences were not addressed, although the paper seems to focused more on explaining away data it doesn't like, or excluding clear examples for various reasons (I suspect exclusion is because the sequences are partial or full gene segments were not released).

    Comment


    • #17
      Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

      Originally posted by niman View Post
      For the two candidate recombinants A/New York/11/2003 (PB2) and
      188 A/Christchurch/14/2004 (NP), it is also puzzling that the parental sequences were sampled 25
      189 and 31 years apart, respectively. Hence, for one of these recombination events to have
      190 occurred, a lineage of viruses closely related to an ?archaic? virus (either A/Hong Kong/14/1974
      191 or A/Beijing/1/1968) must have circulated until at least 1999 and recombined with A/New
      192 York/424/1999 or A/New York/153/1999. Given the rapid rate of influenza A virus mutation
      193 through frequent RNA polymerase error, as well as the rapid lineage turnover driven by positive
      194 selection on the major antigenic proteins (6, 11, 12, 23), this scenario seems extremely unlikely.
      195 Thus, laboratory error, such as template switching during amplification in a mixed or contaminated sample, is a likely explanation of these apparent homologous
      196 recombination
      197 events.
      I'm not sure if there are errors in the paper, but I don't see anything that remotely looks like recombination in A/Christchurch/14/2004 (NP).

      Comment


      • #18
        Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

        I have this in my NP-file :

        NP:
        p=0.0000000000000042323 1445 5480 l:1064 cut: 850 dif: 246= 151+ 95 A/Christchurch/14/2004(H3N2) A/quail/Shantou/1218/2003(H6N1)

        but it involves H6N1.
        I'll check later.

        ------------------------------

        Code:
        p=0.0000000000000042323 1445 5480 l:1064 cut: 850 dif: 246= 151+  95    >A/Christchurch/14/04(H3N2)     >A/Qa/Shantou/1218/03(H6N1)
        p=0.0000089305815657764 1445  345 l:1496 cut: 300 dif:  51=  24+  27    >A/Christchurch/14/04(H3N2)     >A/HK/498/97(H3N2)
        p=0.0000245520022496002 1445  481 l:1001 cut: 750 dif: 205= 130+  75    >A/Christchurch/14/04(H3N2)     >A/Dk/Shantou/2088/01(H9N2)
        p=0.0000422254888616796 1445  334 l:1496 cut: 750 dif: 275= 108+ 167    >A/Christchurch/14/04(H3N2)     >A/Sw/Nebraska/209/98(H3N2)
        
        
        checking for 2 cuts :
        
        p=0.0000000000000000000 1445 5480 l:1064  973-1053 dif: 246= 186+  60    >A/Christchurch/14/04(H3N2)     >A/Qa/Shantou/1218/03(H6N1)
        p=0.0000000000005338106 1445 5674 l: 287  153- 273 dif:  99=  29+  70    >A/Christchurch/14/04(H3N2)     >A/PR/8/34(H1N1)
        
        p=0.0000000055769896136 1445 4944 l:1474 1433-1473 dif: 303= 278+  25    >A/Christchurch/14/04(H3N2)     >A/Sw/Hangzhou/1/06(H9N2)
        p=0.0000000203857481050 1445  323 l:1405   33-1353 dif: 293=  40+ 253    >A/Christchurch/14/04(H3N2)     >A/China) segment 5 nucleoprotein(NP) gene, partial cds
        p=0.0000000324854822614 1445  334 l:1496  753-1333 dif: 275= 128+ 147    >A/Christchurch/14/04(H3N2)     >A/Sw/Nebraska/209/98(H3N2)
        p=0.0000000758549573162 1445 4784 l:1496  773-1333 dif: 268= 129+ 139    >A/Christchurch/14/04(H3N2)     >A/Sw/British Columbia/28103/05(H3N2)
        p=0.0000001155391775063 1445 4785 l:1496  773-1333 dif: 267= 129+ 138    >A/Christchurch/14/04(H3N2)     >A/Sw/Manitoba/12707/05(H3N2)
        p=0.0000001402953788517 1445 4718 l:1496 1113-1173 dif: 303= 273+  30    >A/Christchurch/14/04(H3N2)     >A/Dk/Guangxi/13/04(H5N1)
        p=0.0000001751326206486 1445 4782 l:1496  773-1333 dif: 266= 129+ 137    >A/Christchurch/14/04(H3N2)     >A/Ontario/RV1273/05(H3N2)




        but that PR/34 sequence is a mess, so it's probably not relevant:

        Code:
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------.......oo...o.o...
        o.o......o.o..............o...........o..o.....o..........o.
        ...........o...o................o....o.........o..oo.o..o...
        .............o...o....oo.o.ooooooo..ooooooooo..-------------
        ------------------------------------------------------------
        -----.o.o.oo.oo..ooooooo.ooo...oooo.o.o.oooo...o..o..oo.oo..
        o.----------------------------------------------------------
        ------------------------------------------------------------
        ---------------------.oo.o....o...oooo.oo.oo...ooooo.o.oo..o
        ..oo--------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        --------------------------------------------------------

        the Shantou-quail looks irrelevant too (sequencing/alignment error)

        Code:
        se7a5.10
        >A/Christchurch/14/04(H3N2)
        >A/Qa/Shantou/1218/03(H6N1)
        ........o..............o........o.............o...o..o......
        .....o........o..o.....o..o..o.oo...o...o.........o..o..o..o
        ..o..o..............o...........oo........o.oo.o..o.........
        o.o..........o......o........o...........o.....o.o..........
        .....o.....o...........o..o...........o..o..o..o..oo.o..ooo.
        ..o..o..o.....o..o..o..oo.o..o...........o..o..o..oo....o...
        ..o.....o........o..o.....o...........o........o............
        .....oo.o........o...........o...........o.....o.....o.....o
        .......................o..o..o.....o..o..o..o..o........o...
        ..o.....o..o...o.......o..............oo.o..o...o.o.....o...
        .....o.....o.................o.....o..o.o......o.o..........
        ..............o..o.....o..............o...............o.....
        ..o..oo.......oo.o..o..o..o........o..o........o..o...o.....
        o.o..o...o.o..oo.......o...o.o..o..o..o..o.....o.....o....o.
        ..o....o...o...o.......o..o........o.o...o..o.....o..o..o...
        .....o......ooo..o..o.....o.....oo.o.o...o...........o..o...
        ........----------------------------------------------------
        --------------------------------.oooooooo..oooo.ooooo.oooo.o
        o.ooooooooo.ooooo.oo.o..oo..ooo.oooo.o.o.oooooooo.o..oooo.oo
        o.ooo.------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        ------------------------------------------------------------
        --------------------------------------------------------
        I'm interested in expert panflu damage estimates
        my current links: http://bit.ly/hFI7H ILI-charts: http://bit.ly/CcRgT

        Comment


        • #19
          Look at the lead authors CV.

          It's a kid, a postdoc less than 2 years out of his PhD.

          Don't get your panties in a wad, Henry. They arbitrarily set the limit at 100 nucleotide chunks, while admitting to finding many shorter sequences that may well have supported your point of increasing viral utilization of homologous recombination. These authors are looking for large sequence exchanges, but I don't think that's how this type of adaptation works. It's fine tuning of a normally benign virus-turned-pathogen to a susceptible host and local environment, amplification of pre-existing *very low* probability phenotypes that are carried within a larger pool in circulation.

          Don't worry, boyo. You'll be vindicated shortly.

          The key is to understand that recombination is ordinarily a rare event (over the course of decades to as long as a hundred years or more). You're catching evidence that it's a syncopated process and presently very much in evidence.

          Comment


          • #20
            Re: Look at the lead authors CV.

            Originally posted by Oracle View Post
            It's a kid, a postdoc less than 2 years out of his PhD.

            Don't get your panties in a wad, Henry. They arbitrarily set the limit at 100 nucleotide chunks, while admitting to finding many shorter sequences that may well have supported your point of increasing viral utilization of homologous recombination. These authors are looking for large sequence exchanges, but I don't think that's how this type of adaptation works. It's fine tuning of a normally benign virus-turned-pathogen to a susceptible host and local environment, amplification of pre-existing *very low* probability phenotypes that are carried within a larger pool in circulation.

            Don't worry, boyo. You'll be vindicated shortly.

            The key is to understand that recombination is ordinarily a rare event (over the course of decades to as long as a hundred years or more). You're catching evidence that it's a syncopated process and presently very much in evidence.
            This paper is a good vehicle for addressing this issue. The senoir authors (Holmes and Taughtenberger) have been avoiding recombination for some time. Holmes called the recombination in HA of 1918 "differential evolution" (even though the recombination is actually in all 8 gene segments), while Taughtenberger is looking for the 1918 precursor, when it is actually a recombinant between H1N1 human and swine (WSN/33 and swine/Iowa/15/31).

            This paper presents a good opportunity to attack this head on. There are some OBVIOUS examples in HA sequences from South Korea on the human side, and the paper is indirectly stating that the OBVIOUS examples in the Canadian swine are lab artifacts, involving MULTIPLE prior isolates.

            The paper (and authors) are now fair game, and deserve the attention they will shortly receive.

            Comment


            • #21
              Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

              Originally posted by gsgs View Post
              I have this in my NP-file :

              NP:
              p=0.0000000000000042323 1445 5480 l:1064 cut: 850 dif: 246= 151+ 95 A/Christchurch/14/2004(H3N2) A/quail/Shantou/1218/2003(H6N1)

              but it involves H6N1.
              I'll check later.

              ------------------------------

              Code:
               
              p=0.0000000000000042323 1445 5480 l:1064 cut: 850 dif: 246= 151+  95    >A/Christchurch/14/04(H3N2)     >A/Qa/Shantou/1218/03(H6N1)
              p=0.0000089305815657764 1445  345 l:1496 cut: 300 dif:  51=  24+  27    >A/Christchurch/14/04(H3N2)     >A/HK/498/97(H3N2)
              p=0.0000245520022496002 1445  481 l:1001 cut: 750 dif: 205= 130+  75    >A/Christchurch/14/04(H3N2)     >A/Dk/Shantou/2088/01(H9N2)
              p=0.0000422254888616796 1445  334 l:1496 cut: 750 dif: 275= 108+ 167    >A/Christchurch/14/04(H3N2)     >A/Sw/Nebraska/209/98(H3N2)
              Below is what is currently at Genbank, and I don't see any recombination

              LOCUS CY002925 1565 bp ss-RNA linear VRL 15-SEP-2005
              DEFINITION Influenza A virus (A/Christchurch/14/2004(H3N2)) segment 5,
              complete sequence.
              ACCESSION CY002925
              VERSION CY002925.1 GI:75750237
              KEYWORDS .
              SOURCE Influenza A virus (A/Christchurch/14/2004(H3N2))
              ORGANISM Influenza A virus (A/Christchurch/14/2004(H3N2))
              Viruses; ssRNA negative-strand viruses; Orthomyxoviridae;
              Influenzavirus A.
              REFERENCE 1 (bases 1 to 1565)
              AUTHORS Ghedin,E., Spiro,D., Sengamalay,N., Zaborsky,J., Feldblyum,T.,
              Subbu,V., Sparenborg,J., Groveman,L., Halpin,R., Shumway,M.,
              Sitz,J., Katzel,D., Koo,H., Salzberg,S.L., Jennings,L., Smit,M.,
              Wells,V., Bao,Y., Bolotov,P., Dernovoy,D., Kiryutin,B., Lipman,D.J.
              and Tatusova,T.
              TITLE The NIAID Influenza Genome Sequencing Project
              JOURNAL Unpublished
              REFERENCE 2 (bases 1 to 1565)
              CONSRTM The NIAID Influenza Genome Sequencing Consortium
              TITLE Direct Submission
              JOURNAL Submitted (15-SEP-2005) on behalf of TIGR/Canterbury Health
              Laboratories, NZ/NCBI, National Center for Biotechnology
              Information, NIH, Bethesda, MD 20894, USA
              FEATURES Location/Qualifiers
              source 1..1565
              /organism="Influenza A virus
              (A/Christchurch/14/2004(H3N2))"
              /mol_type="genomic RNA"
              /strain="A/Christchurch/14/2004"
              /serotype="H3N2"
              /isolation_source="gender:M; age:6y"
              /specific_host="human"
              /db_xref="taxon:345301"
              /segment="5"
              /lab_host="MDCK2 passage(s)"
              /country="New Zealand: Christchurch"
              /collection_date="08/07/2004"
              gene 46..1542
              /gene="NP"
              CDS 46..1542
              /gene="NP"
              /codon_start=1
              /product="nucleocapsid protein"
              /protein_id="ABA26737.1"
              /db_xref="GI:75750238"
              /translation="MASQGTKRSYEQMETDGDRQNATEIRASVGKMIDGIG RFYIQMC
              TELKLSDHEGRLIQNSLTIEKMVLSAFDERRNKYLEEHPSAGKDPKKTGG PIYRRVDG
              KWMRELVLYDKEEIRRIWRQANNGEDATAGLTHIMIWHSNLNDATYQRTR ALVRTGMD
              PRMCSLMQGSTLPRRSGAAGAAVKGIGTMVMELIRMVKRGINDRNFWRGE NGRKTRSA
              YERMCNILKGKFQTAAQRAMVDQVRESRNPGNAEIEDLIFLARSALILRG SVAHKSCL
              PACAYGPAVSSGYDFEKEGYSLVGIDPFKLLQNSQIYSLIRPNENPAHKS QLVWMACH
              SAAFEDLRLLSFIRGTKVSPRGKLSTRGVQIASNENMDNMGSSTLELRSG YWAIRTRS
              GGNTNQQRASAGQTSVQPTFSVQRNLPFEKSTIMAAFTGNTEGRTSDMRA EIIRMMEG
              AKPEEVSFRGRGVFELSDEKAANPIVPSFDMSNEGSYFFGDNAEEYDN"
              ORIGIN
              1 agcaaaagca gggttaataa tcactcactg agtgacatca aaatcatggc gtcccaaggc
              61 accaaacggt cttatgaaca gatggaaact gatggggatc gccagaatgc aactgagatt
              121 agggcatccg tcgggaagat gattgatgga attgggagat tctacatcca aatgtgcact
              181 gaacttaaac tcagtgatca tgaagggcga ttaatccaga acagcttgac aatagagaaa
              241 atggtgctct ctgcttttga tgaaagaagg aataaatacc tggaagaaca ccccagcgcg
              301 gggaaagatc ccaagaaaac tgggggaccc atatacagga gagtagatgg aaaatggatg
              361 agggaactcg tcctttatga caaagaagaa ataaggcgaa tctggcgcca agccaacaat
              421 ggtgaggatg cgacagctgg tctaactcac ataatgatct ggcattccaa tttgaatgat
              481 gcaacatacc agaggacaag agctcttgtt cgaactggaa tggatcccag aatgtgctct
              541 ctgatgcagg gctcgactct ccctagaagg tccggagctg caggtgctgc agtcaaagga
              601 atcgggacaa tggtgatgga actgatcaga atggtcaaac gggggatcaa cgatcgaaat
              661 ttctggagag gtgagaatgg gcggaaaaca agaagtgctt atgagagaat gtgcaacatt
              721 cttaaaggaa aatttcaaac agctgcacaa agagcaatgg tggatcaagt gagagaaagt
              781 cggaacccag gaaatgctga gatcgaagat ctcatatttt tggcaagatc tgcattgata
              841 ttgagagggt cagttgctca caaatcttgc ctacctgcct gtgcgtatgg acctgcagta
              901 tccagtgggt acgacttcga aaaagaggga tattccttgg tgggaataga ccctttcaaa
              961 ctacttcaaa atagccaaat atacagccta atcagaccta acgagaatcc agcacacaag
              1021 agtcagctgg tgtggatggc atgccattct gctgcatttg aagatttaag attgttaagc
              1081 ttcatcagag ggacaaaagt atctcctcgg gggaaactgt caactagagg ggtacaaatt
              1141 gcttcaaatg agaacatgga taatatggga tcgagcactc ttgaactgag aagcgggtac
              1201 tgggccataa ggaccaggag tggaggaaac actaatcaac agagggcctc cgcaggccaa
              1261 accagtgtgc aacctacgtt ttctgtacaa agaaacctcc catttgaaaa gtcaaccatc
              1321 atggcagcat tcactggaaa tacggaggga agaacttcag acatgagggc agaaatcata
              1381 agaatgatgg aaggtgcaaa accagaagaa gtgtcattcc gggggagggg agttttcgag
              1441 ctctcagacg agaaggcagc gaacccgatc gtgccctctt ttgatatgag taatgaagga
              1501 tcttatttct tcggagacaa tgcagaagag tacgacaatt aaggaaaaat acccttgttt
              1561 ctact

              Comment


              • #22
                Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                what examples in Korea did they miss ?

                they were searching for some "mosaic" structure.

                Did they consider amino-acid sequences or nucleotides ?
                I'm interested in expert panflu damage estimates
                my current links: http://bit.ly/hFI7H ILI-charts: http://bit.ly/CcRgT

                Comment


                • #23
                  Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                  Originally posted by gsgs View Post
                  what examples in Korea did they miss ?

                  they were searching for some "mosaic" structure.

                  Did they consider amino-acid sequences or nucleotides ?
                  The OBVIOUS HA sequences from Korea are below (recombination is between 575-1008 of submitted sequences)

                  A/Cheonnam/323/2002
                  A/Cheonnam/338/2002
                  A/Cheonnam/340/2002
                  A/Kyongbuk/320/2002
                  A/Daejeon/258/2002
                  A/Incheon/260/2002

                  Comment


                  • #24
                    Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                    maybe they didn't check HA

                    > in five different RNA segments
                    I'm interested in expert panflu damage estimates
                    my current links: http://bit.ly/hFI7H ILI-charts: http://bit.ly/CcRgT

                    Comment


                    • #25
                      Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                      Originally posted by gsgs View Post
                      maybe they didn't check HA

                      > in five different RNA segments
                      No, they check all eight gene segments, but didn't find anything in HA.

                      Comment


                      • #26
                        Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                        TABLE 1. Results of recombination analysis of ten A/H3N2 influenza virus data sets.
                        Segment Number
                        sequences
                        (distinct)
                        Alignment
                        length (nt)
                        Variable
                        Sites
                        3SEQ
                        p-
                        value
                        Number
                        ?recombinant?
                        Number
                        ?recombinant?
                        > 100 nt
                        Phylogenetic
                        signal for
                        recombination?

                        PB2 1086 (912) 2347 898 10
                        -3 24 1 Weak
                        PB1 878 (715) 2341 849 0.49 0 0 No
                        PA 1365 (1156) 2242 947 2.6 ? 10
                        -6 28 0 No
                        HA 1365 (1154) 1772 918 1 0 0 No
                        413 (336) 1711 518 1 0 0 No
                        NP 1256 (938) 1570 620 2.9 ? 10
                        -6 6 1 Weak
                        NA 1365 (1059) 1475 754 1.2 ? 10
                        -10 240 0 No
                        413 (274) 1407 438 1 0 0 No
                        MP 1250 (682) 1028 366 0.04 1 0 No

                        NS 630 (344) 906 318 1 0 0 No

                        Comment


                        • #27
                          Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                          Originally posted by gsgs View Post
                          what examples in Korea did they miss ?

                          they were searching for some "mosaic" structure.

                          Did they consider amino-acid sequences or nucleotides ?
                          Mosaic just means recombinant (sequences from two seperate sources). They looked at the nucleotide level.

                          I think they use a phylogentic tree to "confirm" the recombination, so they need the various pieces of genes to be 100 nt to create a tree to "prove" the recombination.

                          Of course most of teh recombination is between closely related sequences and the recombination is common, so its hard to fit their definition, which really only works for OBVIOUS recombination. i.e. the virus knows what it is doing, but the programmer doesn't.

                          Comment


                          • #28
                            Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                            16
                            TABLE 2. Results of the recombination analysis of eight A/H1N1 influenza virus data sets.
                            Segment Number
                            sequences
                            (distinct)
                            Alignment
                            length (nt)
                            Variable
                            Sites
                            3SEQ
                            p-
                            value
                            Number
                            ?recombinant?
                            Number
                            ?recombinant?
                            > 100 nt
                            Phylogenetic signal
                            for recombination?

                            PB2 478 (421) 2346 871 1 0 0 No
                            PB1 478 (399) 2341 870 0.95 0 0 No
                            PA 478 (380) 2238 776 0.96 0 0 No
                            HA 482 (440) 1781 804 0.82 0 0 No
                            NP 478 (332) 1566 544 1 0 0 No
                            NA 481 (405) 1464 657 10
                            -5 16 0 No
                            MP 478 (248) 1027 296 1 0 0 No

                            NS 478 (297) 890 336 1 0 0 No

                            Comment


                            • #29
                              Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                              Originally posted by gsgs View Post
                              maybe they didn't check HA

                              > in five different RNA segments
                              I think the Korea sequences are about 1300 BP (out of 1700) so they didn't use them (although the recombination is in the center of the sequence).

                              This is a good example of the recombination not existing because the submitted sequences don't fit the program, so they don't exist!

                              It's like no H2H in Pakistan because the sample wasn't collected from the dead brother, and all of the other positives degraded so there is only one confirmed case.

                              However influenza really doesn't care about the sample integrity, the press releases, the peer reviewed papers, or the programming requirements for the obvious recombination.

                              This paper was an answer in search of a publication.

                              Comment


                              • #30
                                Re: Homologous Recombination is Very Rare or Absent in Human Influenza A Virus

                                235
                                REFERENCES

                                236
                                1. Aaskov, J., K. Buzacott, E. Field, K. Lowry, A. Berlioz-Arthaud, and E. C. Holmes.

                                237
                                2007. Multiple recombinant dengue type 1 viruses in an isolate from a dengue patient. J.

                                238
                                Gen. Virol. 88:3334-3340.

                                239
                                2. Aoki, F. Y., G. Boivin, and N. Roberts. 2007. Influenza virus susceptibility and

                                240
                                resistance to oseltamivir. Antiviral Therapy 12:603-616.

                                241
                                3. Bergmann, M., A. Garcia-Sastre, and P. Palese. 1992. Transfection-mediated

                                242
                                recombination of influenza A virus. J.Virol. 66:7576-7580.

                                243
                                4. Boni, M. F., D. Posada, and M. W. Feldman. 2007. An exact nonparametric method for

                                244
                                inferring mosaic structure in sequence triplets. Genetics 176:1035-1047.

                                245
                                5. Both, G. W., M. J. Sleigh, N. J. Cox, and A. P. Kendal. 1983. Antigenic drift in

                                246
                                influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and

                                247
                                sequential amino acid changes at key antigenic sites. J. Virol. 48:52-60.

                                248
                                6. Bush, R. M., W. M. Fitch, C. A. Bender, and N. J. Cox. 1999. Positive selection on the

                                249
                                H3 hemagglutinin gene of human influenza virus A. Mol. Biol. Evol. 16:1457-1465.

                                250
                                7. CDC. 2007. Deaths: Final Data for 2004. National Vital Statistics Reports 55.

                                251
                                8. Chare, E. R., E. A. Gould, and E. C. Holmes. 2003. Phylogenetic analysis reveals a

                                252
                                low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol.

                                253
                                84:2691-2703.

                                254
                                9. Deyde, V. M., X. Xu, R. A. Bright, M. Shaw, C. B. Smith, Y. Zhang, Y. Shu, L. V.

                                255
                                Gubareva, N. J. Cox, and A. I. Klimov. 2007. Surveillance of resistance to

                                256
                                adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J.

                                257
                                Infect. Dis. 196:249-257.

                                258
                                10. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and

                                259 high throughput. Nucleic Acids Res. 32:1792-1797.
                                11.
                                Ferguson, N. M., A. P. Galvani, and R. M. Bush. 2003. Ecological 260 and immunological

                                261
                                determinants of influenza evolution. Nature 422:428-433.

                                262
                                12. Fitch, W. M., R. M. Bush, C. A. Bender, and N. J. Cox. 1997. Long term trends in the

                                263
                                evolution of H(3) HA1 human influenza type A. Proc. Nat. Acad. Sci. USA 94:7712-7718.

                                264
                                13. Gibbs, M. J., J. S. Armstrong, and A. J. Gibbs. 2001. Recombination in the

                                265
                                Hemagglutinin Gene of the 1918 "Spanish Flu". Science 293:1842.

                                266
                                14. Holmes, E. C., E. Ghedin, N. Miller, J. Taylor, Y. M. Bao, K. St George, B. T.

                                267
                                Grenfell, S. L. Salzberg, C. M. Fraser, and D. J. Lipman. 2005. Whole-genome

                                268
                                analysis of human influenza A virus reveals multiple persistent lineages and

                                269
                                reassortment among recent H3N2 viruses. PLoS Biol. 3:e300.

                                270
                                15. Kawaoka, Y., S. Krauss, and R. G. Webster. 1989. Avian-to-human transmission of the

                                271
                                PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63:4603-

                                272
                                4608.

                                273
                                16. Khatchikian, D., M. Orlich, and R. Rott. 1989. Increased viral pathogenicity after

                                274
                                insertion of a 28 S ribosomal RNA sequence into the haemagglutinin gene of an

                                275
                                influenza virus. Nature 340:156-157.

                                276
                                17. Kilbourne, E. D. 1978. Molecular epidemiology ? influenza as archetype. Harvey

                                277
                                Lectures 73:225-258.

                                278
                                18. Nelson, M. I., L. Simonsen, C. Viboud, M. A. Miller, J. Taylor, K. S. George, S. B.

                                279
                                Griesemer, E. Ghedin, N. A. Sengamalay, D. J. Spiro, I. Volkov, B. T. Grenfell, D. J.

                                280
                                Lipman, J. K. Taubenberger, and E. C. Holmes. 2006. Stochastic processes are key

                                281
                                determinants of short-term evolution in influenza A virus. PLoS Pathog. 2:e125.

                                282
                                19. Niman, H. 2007. Swine Influenza A Evolution via Recombination ? Genetic Drift

                                283
                                Reservoir, Available from Nature Precedings.

                                284 <http://hdl.handle.net/10101/npre.2007.385.1>.
                                20.
                                Orlich, M., H. Gottwald, and R. Rott. 1994. Nonhomologous recombination 285 between

                                286
                                the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology

                                287
                                204:462-5.

                                288
                                21. Posada, D., and K. A. Crandall. 1998. MODELTEST: testing the model of DNA

                                289
                                substitution. Bioinformatics 14:817-818.

                                290
                                22. Scholtissek, C., W. Rohde, V. Von Hoyningen, and R. Rott. 1978. On the origin of the

                                291
                                human influenza virus subtypes H2N2 and H3N2. Virology 87:13-20.

                                292
                                23. Smith, D. J., A. S. Lapedes, J. C. de Jong, T. M. Bestebroer, G. F. Rimmelzwaan, A.

                                293
                                D. M. E. Osterhaus, and R. A. M. Fouchier. 2004. Mapping the antigenic and genetic

                                294
                                evolution of influenza virus. Science 305:371-376.

                                295
                                24. Strimmer, K., K. Forslund, B. Holland, and V. Moulton. 2003. A novel exploratory

                                296
                                method for visual recombination detection. Genome Biol. 4:R33.

                                297
                                25. Suarez, D. L., D. A. Senne, J. Banks, I. H. Brown, S. C. Essen, C. W. Lee, R. J.

                                298
                                Manvell, C. Mathieu-Benson, V. Moreno, and J. C. Pedersen. 2004. Recombination

                                299
                                resulting in virulence shift in avian influenza outbreak, Chile. Emerg. Infect. Dis. 10:693-

                                300
                                699.

                                301
                                26. Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other

                                302
                                methods). Version 4. Sinauer Associates, Sunderland, MA.

                                303
                                27. Taubenberger, J. K., and D. M. Morens. 2006. 1918 Influenza: the mother of all

                                304
                                pandemics. Emerg. Infect. Dis. 12:15-22.

                                305
                                28. Thompson, W. W., D. K. Shay, E. Weintraub, L. Brammer, N. Cox, L. J. Anderson,

                                306
                                and K. Fukuda. 2003. Mortality associated with influenza and respiratory syncytial virus

                                307
                                in the United States. JAMA 289:179-186.

                                308
                                29. Webster, R. G., W. J. Bean, O. T. Gorman, T. M. Chambers, and Y. Kawaoka. 1992.

                                309 Evolution and ecology of influenza A viruses. Microbiol. Rev. 56:152-179.
                                30.
                                Wittmann, T. J., R. Biek, A. Hassanin, P. Rouquet, P. Reed, P. Yaba, 310 X. Pourrut, L.

                                311
                                A. Real, J.-P. Gonzalez, and E. M. Leroy. 2007. Isolates of Zaire ebolavirus from wild

                                312
                                apes reveal genetic lineage of recombinants. Proc. Nat. Acad. Sci. USA 104:17123-

                                313
                                17127.

                                314
                                31. Worobey, M., A. Rambaut, O. G. Pybus, and D. L. Robertson. 2002. Questioning the

                                315
                                evidence for genetic recombination in the 1918 "Spanish Flu? Virus. Science 296:211-

                                316
                                211.

                                317
                                318

                                Comment

                                Working...
                                X