[Source: US National Library of Medicine, full page: (LINK). Abstract, edited.]
Virol J. 2013 Aug 26;10(1):266. [Epub ahead of print]
A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV.
Zhao G, Du L, Ma C, Li Y, Li L, Poon VK, Wang L, Yu F, Zheng BJ, Jiang S, Zhou Y.
Abstract
BACKGROUND:
Evidence points to the emergence of a novel human coronavirus, MERS-CoV, which causes a severe acute respiratory syndrome (SARS)-like disease. In response, the development of effective vaccines and therapeutics remains a clinical priority. To accomplish this, it is necessary to evaluate neutralizing antibodies and screen for MERS-CoV entry inhibitors.
METHODS:
In this study, we produced a pseudovirus bearing the full-length spike (S) protein of MERS-CoV in the Env-defective, luciferase-expressing HIV-1 backbone. We then established a pseudovirus-based inhibition assay to detect neutralizing antibodies and anti-MERS-CoV entry inhibitors.
RESULTS:
Our results demonstrated that the generated MERS-CoV pseudovirus allows for single-cycle infection of a variety of cells expressing dipeptidyl peptidase-4 (DPP4), the confirmed receptor for MERS-CoV. Consistent with the results from a live MERS-CoV-based inhibition assay, the antisera of mice vaccinated with a recombinant protein containing receptor-binding domain (RBD, residues 377--662) of MERS-CoV S fused with Fc of human IgG exhibited neutralizing antibody response against infection of MERS-CoV pseudovirus. Furthermore, one small molecule HIV entry inhibitor targeting gp41 (ADS-J1) and the 3-hydroxyphthalic anhydride-modified human serum albumin (HP-HSA) could significantly inhibit MERS-CoV pseudovirus infection.
CONCLUSION:
Taken together, the established MERS-CoV inhibition assay is a safe and convenient pseudovirus-based alternative to BSL-3 live-virus restrictions and can be used to rapidly screen MERS-CoV entry inhibitors, as well as evaluate vaccine-induced neutralizing antibodies against the highly pathogenic MERS-CoV.
PMID: 23978242 [PubMed - as supplied by publisher]
-
-------
Virol J. 2013 Aug 26;10(1):266. [Epub ahead of print]
A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV.
Zhao G, Du L, Ma C, Li Y, Li L, Poon VK, Wang L, Yu F, Zheng BJ, Jiang S, Zhou Y.
Abstract
BACKGROUND:
Evidence points to the emergence of a novel human coronavirus, MERS-CoV, which causes a severe acute respiratory syndrome (SARS)-like disease. In response, the development of effective vaccines and therapeutics remains a clinical priority. To accomplish this, it is necessary to evaluate neutralizing antibodies and screen for MERS-CoV entry inhibitors.
METHODS:
In this study, we produced a pseudovirus bearing the full-length spike (S) protein of MERS-CoV in the Env-defective, luciferase-expressing HIV-1 backbone. We then established a pseudovirus-based inhibition assay to detect neutralizing antibodies and anti-MERS-CoV entry inhibitors.
RESULTS:
Our results demonstrated that the generated MERS-CoV pseudovirus allows for single-cycle infection of a variety of cells expressing dipeptidyl peptidase-4 (DPP4), the confirmed receptor for MERS-CoV. Consistent with the results from a live MERS-CoV-based inhibition assay, the antisera of mice vaccinated with a recombinant protein containing receptor-binding domain (RBD, residues 377--662) of MERS-CoV S fused with Fc of human IgG exhibited neutralizing antibody response against infection of MERS-CoV pseudovirus. Furthermore, one small molecule HIV entry inhibitor targeting gp41 (ADS-J1) and the 3-hydroxyphthalic anhydride-modified human serum albumin (HP-HSA) could significantly inhibit MERS-CoV pseudovirus infection.
CONCLUSION:
Taken together, the established MERS-CoV inhibition assay is a safe and convenient pseudovirus-based alternative to BSL-3 live-virus restrictions and can be used to rapidly screen MERS-CoV entry inhibitors, as well as evaluate vaccine-induced neutralizing antibodies against the highly pathogenic MERS-CoV.
PMID: 23978242 [PubMed - as supplied by publisher]
-
-------