Avian Influenza A (H5N1) Infection in Humans
<CENTER>The Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5 </CENTER><TABLE cellSpacing=0 cellPadding=0 width=200 align=right border=0><TBODY><TR><TD width=20> </TD><TD bgColor=#336699><TABLE cellSpacing=1 cellPadding=0 border=0><TBODY><TR vAlign=top><TD align=middle width=200 bgColor=#e8e8d1>


























</CENTER> --><TABLE cellSpacing=1 cellPadding=0 width=480 align=center bgColor=#336699 border=0><TBODY><TR><TD>
<TABLE cellSpacing=0 cellPadding=6 align=center bgColor=#eff1ff border=0><TBODY><TR><TD vAlign=center align=middle>
</TD></TR></TBODY></TABLE>EDITOR'S NOTE:Due to broad interest in the avian flu, this article is free to access, and it has been translated into multiple languages to assist clinicians around the world:
<TABLE cellSpacing=0 cellPadding=0 align=center border=0><TBODY><TR><TD vAlign=center width=75>Deutsch</TD><TD vAlign=center width=155>Polski</TD><TD vAlign=center>
</TD></TR><TR><TD vAlign=center width=75>Espa?ol</TD><TD vAlign=center width=155>Portugu?s Brasileiro</TD><TD vAlign=center>
</TD></TR><TR><TD vAlign=center width=75>Fran?ais</TD><TD vAlign=center width=155>Turkce</TD><TD vAlign=center>
</TD></TR><TR><TD vAlign=center width=75>Italiano</TD><TD vAlign=center width=155> </TD><TD vAlign=center>
</TD></TR></TBODY></TABLE>
</TD></TR></TBODY></TABLE><TABLE cellSpacing=0 cellPadding=0 align=center border=0><TBODY><TR><TD vAlign=center width=75>Deutsch</TD><TD vAlign=center width=155>Polski</TD><TD vAlign=center>




<!--<CENTER></NOBR><NOBR>The Writing Committee of the World Health Organization (WHO) Consultation on Human Influenza A/H5</NOBR></CENTER>
-->An unprecedented epizootic avian influenza A (H5N1) virus that<SUP> </SUP>is highly pathogenic has crossed the species barrier in Asia<SUP> </SUP>to cause many human fatalities and poses an increasing pandemic<SUP> </SUP>threat. This summary describes the features of human infection<SUP> </SUP>with influenza A (H5N1) and reviews recommendations for prevention<SUP> </SUP>and clinical management presented in part at the recent World<SUP> </SUP>Health Organization (WHO) Meeting on Case Management and Research<SUP> </SUP>on Human Influenza A/H5, which was held in Hanoi, May 10 through<SUP> </SUP>12, 2005.<SUP>1</SUP> Because many critical questions remain, modifications<SUP> </SUP>of these recommendations are likely.<SUP> </SUP>
Incidence
The occurrence of human influenza A (H5N1) in Southeast Asia<SUP> </SUP>(Table 1) has paralleled large outbreaks of avian influenza<SUP> </SUP>A (H5N1), although the avian epidemics in 2004 and 2005 have<SUP> </SUP>only rarely led to disease in humans. The largest number of<SUP> </SUP>cases has occurred in Vietnam, particularly during the third,<SUP> </SUP>ongoing wave, and the first human death was recently reported<SUP> </SUP>in Indonesia. The frequencies of human infection have not been<SUP> </SUP>determined, and seroprevalence studies are urgently needed.<SUP> </SUP>The expanding geographic distribution of avian influenza A (H5N1)<SUP> </SUP>infections, with recent outbreaks in Kazakstan, Mongolia, and<SUP> </SUP>Russia, indicates that more human populations are at risk.<SUP>2</SUP><SUP>,</SUP><SUP>3</SUP><SUP> </SUP>
<!-- null --><TABLE cellSpacing=0 cellPadding=0><TBODY><TR bgColor=#e8e8d1><TD><TABLE cellSpacing=2 cellPadding=2><TBODY><TR bgColor=#e8e8d1><TD vAlign=top align=middle bgColor=#ffffff>View this table:
<NOBR>[in this window]
[in a new window]
</NOBR> </TD><TD vAlign=top align=left>Table 1. Cumulative Number of Virologically Confirmed Cases of Avian Influenza A (H5N1) in Humans Reported to the WHO since 2003.
</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>
Transmission
Human influenza is transmitted by inhalation of infectious droplets<SUP> </SUP>and droplet nuclei, by direct contact, and perhaps, by indirect<SUP> </SUP>(fomite) contact, with self-inoculation onto the upper respiratory<SUP> </SUP>tract or conjunctival mucosa.<SUP>4</SUP><SUP>,</SUP><SUP>5</SUP> The relative efficiency of<SUP> </SUP>the different routes of transmission has not been defined. For<SUP> </SUP>human influenza A (H5N1) infections, evidence is consistent<SUP> </SUP>with bird-to-human, possibly environment-to-human, and limited,<SUP> </SUP>nonsustained human-to-human transmission to date.<SUP> </SUP>
Animal to Human
In 1997, exposure to live poultry within a week before the onset<SUP> </SUP>of illness was associated with disease in humans, whereas there<SUP> </SUP>was no significant risk related to eating or preparing poultry<SUP> </SUP>products or exposure to persons with influenza A (H5N1) disease.<SUP>6</SUP><SUP> </SUP>Exposure to ill poultry and butchering of birds were associated<SUP> </SUP>with seropositivity for influenza A (H5N1)<SUP>7</SUP> (Table 2). Recently,<SUP> </SUP>most patients have had a history of direct contact with poultry<SUP> </SUP>(Table 3), although not those who were involved in mass culling<SUP> </SUP>of poultry. Plucking and preparing of diseased birds; handling<SUP> </SUP>fighting cocks; playing with poultry, particularly asymptomatic<SUP> </SUP>infected ducks; and consumption of duck's blood or possibly<SUP> </SUP>undercooked poultry have all been implicated. Transmission to<SUP> </SUP>felids has been observed by feeding raw infected chickens to<SUP> </SUP>tigers and leopards in zoos in Thailand<SUP>17</SUP><SUP>,</SUP><SUP>18</SUP> and to domestic<SUP> </SUP>cats under experimental conditions.<SUP>19</SUP> Transmission between felids<SUP> </SUP>has been found under such conditions. Some infections may be<SUP> </SUP>initiated by pharyngeal or gastrointestinal inoculation of virus.<SUP> </SUP>
<!-- null --><TABLE cellSpacing=0 cellPadding=0><TBODY><TR bgColor=#e8e8d1><TD><TABLE cellSpacing=2 cellPadding=2><TBODY><TR bgColor=#e8e8d1><TD vAlign=top align=middle bgColor=#ffffff>View this table:
<NOBR>[in this window]
[in a new window]
</NOBR> </TD><TD vAlign=top align=left>Table 2. Serologic and Clinical Characteristics of Avian Influenza A (H5N1) Infection among Contacts of Patients or Infected Animals.
</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>
<!-- null --><TABLE cellSpacing=0 cellPadding=0><TBODY><TR bgColor=#e8e8d1><TD><TABLE cellSpacing=2 cellPadding=2><TBODY><TR bgColor=#e8e8d1><TD vAlign=top align=middle bgColor=#ffffff>View this table:
<NOBR>[in this window]
[in a new window]
</NOBR> </TD><TD vAlign=top align=left>Table 3. Presentation and Outcomes among Patients with Confirmed Avian Influenza A (H5N1).
</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>
Human to Human
Human-to-human transmission of influenza A (H5N1) has been suggested<SUP> </SUP>in several household clusters<SUP>16</SUP> and in one case of apparent<SUP> </SUP>child-to-mother transmission (Table 3).<SUP>20</SUP> Intimate contact without<SUP> </SUP>the use of precautions was implicated, and so far no case of<SUP> </SUP>human-to-human transmission by small-particle aerosols has been<SUP> </SUP>identified. In 1997, human-to-human transmission did not apparently<SUP> </SUP>occur through social contact,<SUP>8</SUP> and serologic studies of exposed<SUP> </SUP>health care workers indicated that transmission was inefficient<SUP>9</SUP><SUP> </SUP>(Table 2). Serologic surveys in Vietnam and Thailand have not<SUP> </SUP>found evidence of asymptomatic infections among contacts (Table 2).<SUP> </SUP>Recently, intensified surveillance of contacts of patients<SUP> </SUP>by reverse-transcriptase?polymerase-chain-reaction (RT-PCR)<SUP> </SUP>assay has led to the detection of mild cases, more infections<SUP> </SUP>in older adults, and an increased number and duration of clusters<SUP> </SUP>in families in northern Vietnam,<SUP>21</SUP> findings suggesting that<SUP> </SUP>the local virus strains may be adapting to humans. However,<SUP> </SUP>epidemiologic and virologic studies are needed to confirm these<SUP> </SUP>findings. To date, the risk of nosocomial transmission to health<SUP> </SUP>care workers has been low, even when appropriate isolation measures<SUP> </SUP>were not used<SUP>10</SUP><SUP>,</SUP><SUP>11</SUP> (Table 2). However, one case of severe illness<SUP> </SUP>was reported in a nurse exposed to an infected patient in Vietnam.<SUP> </SUP>
Environment to Human
Given the survival of influenza A (H5N1) in the environment,<SUP> </SUP>several other modes of transmission are theoretically possible.<SUP> </SUP>Oral ingestion of contaminated water during swimming and direct<SUP> </SUP>intranasal or conjunctival inoculation during exposure to water<SUP> </SUP>are other potential modes, as is contamination of hands from<SUP> </SUP>infected fomites and subsequent self-inoculation. The widespread<SUP> </SUP>use of untreated poultry feces as fertilizer is another possible<SUP> </SUP>risk factor.<SUP> </SUP>
Clinical Features
The clinical spectrum of influenza A (H5N1) in humans is based<SUP> </SUP>on descriptions of hospitalized patients. The frequencies of<SUP> </SUP>milder illnesses, subclinical infections, and atypical presentations<SUP> </SUP>(e.g., encephalopathy and gastroenteritis) have not been determined,<SUP> </SUP>but case reports<SUP>12</SUP><SUP>,</SUP><SUP>21</SUP><SUP>,</SUP><SUP>22</SUP> indicate that each occurs. Most patients<SUP> </SUP>have been previously healthy young children or adults (Table 3).<SUP> </SUP><SUP></SUP>
Incubation
The incubation period of avian influenza A (H5N1) may be longer<SUP> </SUP>than for other known human influenzas. In 1997, most cases occurred<SUP> </SUP>within two to four days after exposure<SUP>13</SUP>; recent reports<SUP>15</SUP><SUP>,</SUP><SUP>16</SUP><SUP> </SUP>indicate similar intervals but with ranges of up to eight days<SUP> </SUP>(Table 3). The case-to-case intervals in household clusters<SUP> </SUP>have generally been 2 to 5 days, but the upper limit has been<SUP> </SUP>8 to 17 days, possibly owing to unrecognized exposure to infected<SUP> </SUP>animals or environmental sources.<SUP> </SUP>
Initial Symptoms
Most patients have initial symptoms of high fever (typically<SUP> </SUP>a temperature of more than 38?C) and an influenza-like illness<SUP> </SUP>with lower respiratory tract symptoms<SUP>1</SUP> (Table 3). Upper respiratory<SUP> </SUP>tract symptoms are present only sometimes. Unlike patients with<SUP> </SUP>infections caused by avian influenza A (H7) viruses,<SUP>23</SUP> patients<SUP> </SUP>with avian influenza A (H5N1) rarely have conjunctivitis. Diarrhea,<SUP> </SUP>vomiting, abdominal pain, pleuritic pain, and bleeding from<SUP> </SUP>the nose and gums have also been reported early in the course<SUP> </SUP>of illness in some patients.<SUP>14</SUP><SUP>,</SUP><SUP>15</SUP><SUP>,</SUP><SUP>16</SUP><SUP>,</SUP><SUP>24</SUP> Watery diarrhea without<SUP> </SUP>blood or inflammatory changes appears to be more common than<SUP> </SUP>in influenza due to human viruses<SUP>25</SUP> and may precede respiratory<SUP> </SUP>manifestations by up to one week.<SUP>12</SUP> One report described two<SUP> </SUP>patients who presented with an encephalopathic illness and diarrhea<SUP> </SUP>without apparent respiratory symptoms.<SUP>22</SUP><SUP> </SUP>
Clinical Course
Lower respiratory tract manifestations develop early in the<SUP> </SUP>course of illness and are usually found at presentation (Table 3).<SUP> </SUP>In one series, dyspnea developed a median of 5 days after<SUP> </SUP>the onset of illness (range, 1 to 16).<SUP>15</SUP> Respiratory distress,<SUP> </SUP>tachypnea, and inspiratory crackles are common. Sputum production<SUP> </SUP>is variable and sometimes bloody. Almost all patients have clinically<SUP> </SUP>apparent pneumonia; radiographic changes include diffuse, multifocal,<SUP> </SUP>or patchy infiltrates; interstitial infiltrates; and segmental<SUP> </SUP>or lobular consolidation with air bronchograms. Radiographic<SUP> </SUP>abnormalities were present a median of 7 days after the onset<SUP> </SUP>of fever in one study (range, 3 to 17).<SUP>15</SUP> In Ho Chi Minh City,<SUP> </SUP>Vietnam, multifocal consolidation involving at least two zones<SUP> </SUP>was the most common abnormality among patients at the time of<SUP> </SUP>admission. Pleural effusions are uncommon. Limited microbiologic<SUP> </SUP>data indicate that this process is a primary viral pneumonia,<SUP> </SUP>usually without bacterial suprainfection at the time of hospitalization.<SUP> </SUP>
Progression to respiratory failure has been associated with<SUP> </SUP>diffuse, bilateral, ground-glass infiltrates and manifestations<SUP> </SUP>of the acute respiratory distress syndrome (ARDS). In Thailand,<SUP>15</SUP><SUP> </SUP>the median time from the onset of illness to ARDS was 6 days<SUP> </SUP>(range, 4 to 13). Multiorgan failure with signs of renal dysfunction<SUP> </SUP>and sometimes cardiac compromise, including cardiac dilatation<SUP> </SUP>and supraventricular tachyarrhythmias, has been common.<SUP>14</SUP><SUP>,</SUP><SUP>15</SUP><SUP>,</SUP><SUP>16</SUP><SUP>,</SUP><SUP>24</SUP><SUP> </SUP>Other complications have included ventilator-associated pneumonia,<SUP> </SUP>pulmonary hemorrhage, pneumothorax, pancytopenia, Reye's syndrome,<SUP> </SUP>and sepsis syndrome without documented bacteremia.<SUP> </SUP>
Mortality
The fatality rate among hospitalized patients has been high<SUP> </SUP>(Table 3), although the overall rate is probably much lower.<SUP>21</SUP><SUP> </SUP>In contrast to 1997, when most deaths occurred among patients<SUP> </SUP>older than 13 years of age, recent avian influenza A (H5N1)<SUP> </SUP>infections have caused high rates of death among infants and<SUP> </SUP>young children. The case fatality rate was 89 percent among<SUP> </SUP>those younger than 15 years of age in Thailand. Death has occurred<SUP> </SUP>an average of 9 or 10 days after the onset of illness (range,<SUP> </SUP>6 to 30),<SUP>15</SUP><SUP>,</SUP><SUP>16</SUP> and most patients have died of progressive respiratory<SUP> </SUP>failure.<SUP> </SUP>
Laboratory Findings
Common laboratory findings have been leukopenia, particularly<SUP> </SUP>lymphopenia; mild-to-moderate thrombocytopenia; and slightly<SUP> </SUP>or moderately elevated aminotransferase levels (Table 3). Marked<SUP> </SUP>hyperglycemia, perhaps related to corticosteroid use, and elevated<SUP> </SUP>creatinine levels also occur.<SUP>16</SUP> In Thailand,<SUP>15</SUP> an increased<SUP> </SUP>risk of death was associated with decreased leukocyte, platelet,<SUP> </SUP>and particularly, lymphocyte counts at the time of admission.<SUP> </SUP>
Virologic Diagnosis
Antemortem diagnosis of influenza A (H5N1) has been confirmed<SUP> </SUP>by viral isolation, the detection of H5-specific RNA, or both<SUP> </SUP>methods. Unlike human influenza A infection,<SUP>26</SUP> avian influenza<SUP> </SUP>A (H5N1) infection may be associated with a higher frequency<SUP> </SUP>of virus detection and higher viral RNA levels in pharyngeal<SUP> </SUP>than in nasal samples. In Vietnam, the interval from the onset<SUP> </SUP>of illness to the detection of viral RNA in throat-swab samples<SUP> </SUP>ranged from 2 to 15 days (median, 5.5), and the viral loads<SUP> </SUP>in pharyngeal swabs 4 to 8 days after the onset of illness were<SUP> </SUP>at least 10 times as high among patients with influenza A (H5N1)<SUP> </SUP>as among those with influenza A (H3N2) or (H1N1). Earlier studies<SUP> </SUP>in Hong Kong also found low viral loads in nasopharyngeal samples.<SUP>27</SUP><SUP> </SUP>Commercial rapid antigen tests are less sensitive in detecting<SUP> </SUP>influenza A (H5N1) infections than are RT-PCR assays.<SUP>15</SUP> In Thailand,<SUP> </SUP>the results of rapid antigen testing were positive in only 4<SUP> </SUP>of 11 patients with culture-positive influenza A (H5N1) (36<SUP> </SUP>percent) 4 to 18 days after the onset of illness.<SUP> </SUP>
Management
Most hospitalized patients with avian influenza A (H5N1) have<SUP> </SUP>required ventilatory support within 48 hours after admission,<SUP>15</SUP><SUP>,</SUP><SUP>16</SUP><SUP> </SUP>as well as intensive care for multiorgan failure and sometimes<SUP> </SUP>hypotension. In addition to empirical treatment with broad-spectrum<SUP> </SUP>antibiotics, antiviral agents, alone or with corticosteroids,<SUP> </SUP>have been used in most patients (Table 3), although their effects<SUP> </SUP>have not been rigorously assessed. The institution of these<SUP> </SUP>interventions late in the course of the disease has not been<SUP> </SUP>associated with an apparent decrease in the overall mortality<SUP> </SUP>rate, although early initiation of antiviral agents appears<SUP> </SUP>to be beneficial.<SUP>1</SUP><SUP>,</SUP><SUP>15</SUP><SUP>,</SUP><SUP>16</SUP> Cultivable virus generally disappears<SUP> </SUP>within two or three days after the initiation of oseltamivir<SUP> </SUP>among survivors, but clinical progression despite early therapy<SUP> </SUP>with oseltamivir and a lack of reductions in pharyngeal viral<SUP> </SUP>load have been described in patients who have died.<SUP> </SUP>
Pathogenesis
Characterization of Virus
Studies of isolates of avian influenza A (H5N1) from patients<SUP> </SUP>in 1997 revealed that virulence factors included the highly<SUP> </SUP>cleavable hemagglutinin that can be activated by multiple cellular<SUP> </SUP>proteases, a specific substitution in the polymerase basic protein<SUP> </SUP>2 (Glu627Lys) that enhances replication,<SUP>28</SUP><SUP>,</SUP><SUP>29</SUP> and a substitution<SUP> </SUP>in nonstructural protein 1 (Asp92Glu) that confers increased<SUP> </SUP>resistance to inhibition by interferons and tumor necrosis factor<SUP> </SUP>



Phylogenetic analyses indicate that the Z genotype has become<SUP> </SUP>dominant<SUP>33</SUP> and that the virus has evolved into two distinct<SUP> </SUP>clades, one encompassing isolates from Cambodia, Laos, Malaysia,<SUP> </SUP>Thailand, and Vietnam and the other isolates from China, Indonesia,<SUP> </SUP>Japan, and South Korea.<SUP>21</SUP> Recently, a separate cluster of isolates<SUP> </SUP>has appeared in northern Vietnam and Thailand, which includes<SUP> </SUP>variable changes near the receptor-binding site and one fewer<SUP> </SUP>arginine residue in the polybasic cleavage site of the hemagglutinin.<SUP> </SUP>However, the importance of these genetic and biologic changes<SUP> </SUP>with respect to human epidemiology or virulence is uncertain.<SUP> </SUP>
Patterns of Viral Replication
The virologic course of human influenza A (H5N1) is incompletely<SUP> </SUP>characterized, but studies of hospitalized patients indicate<SUP> </SUP>that viral replication is prolonged. In 1997, virus could be<SUP> </SUP>detected in nasopharyngeal isolates for a median of 6.5 days<SUP> </SUP>(range, 1 to 16), and in Thailand, the interval from the onset<SUP> </SUP>of illness to the first positive culture ranged from 3 to 16<SUP> </SUP>days. Nasopharyngeal replication is less than in human influenza,<SUP>27</SUP>and<SUP> </SUP>studies of lower respiratory tract replication are needed. The<SUP> </SUP>majority of fecal samples tested have been positive for viral<SUP> </SUP>RNA (seven of nine), whereas urine samples were negative. The<SUP> </SUP>high frequency of diarrhea among affected patients and the detection<SUP> </SUP>of viral RNA in fecal samples, including infectious virus in<SUP> </SUP>one case,<SUP>22</SUP> suggest that the virus replicates in the gastrointestinal<SUP> </SUP>tract. The findings in one autopsy confirmed this observation.<SUP>41</SUP><SUP> </SUP>
Highly pathogenic influenza A (H5N1) viruses possess the polybasic<SUP> </SUP>amino acid sequence at the hemagglutinin-cleavage site that<SUP> </SUP>is associated with visceral dissemination in avian species.<SUP> </SUP>Invasive infection has been documented in mammals,<SUP>28</SUP><SUP>,</SUP><SUP>29</SUP><SUP>,</SUP><SUP>39</SUP><SUP>,</SUP><SUP>40</SUP><SUP> </SUP>and in humans, six of six serum specimens were positive for<SUP> </SUP>viral RNA four to nine days after the onset of illness. Infectious<SUP> </SUP>virus and RNA were detected in blood, cerebrospinal fluid, and<SUP> </SUP>feces in one patient.<SUP>22</SUP> Whether feces or blood serves to transmit<SUP> </SUP>infection under some circumstances is unknown.<SUP> </SUP>
Host Immune Responses
The relatively low frequencies of influenza A (H5N1) illness<SUP> </SUP>in humans despite widespread exposure to infected poultry indicate<SUP> </SUP>that the species barrier to acquisition of this avian virus<SUP> </SUP>is substantial. Clusters of cases in family members may be caused<SUP> </SUP>by common exposures, although the genetic factors that may affect<SUP> </SUP>a host's susceptibility to disease warrant study.<SUP> </SUP>
The innate immune responses to influenza A (H5N1) may contribute<SUP> </SUP>to disease pathogenesis. In the 1997 outbreaks, elevated blood<SUP> </SUP>levels of interleukin-6, TNF-





Among survivors, specific humoral immune responses to influenza<SUP> </SUP>A (H5N1) are detectable by microneutralization assay 10 to 14<SUP> </SUP>days after the onset of illness. Corticosteroid use may delay<SUP> </SUP>or blunt these responses.<SUP> </SUP>
Pathological Findings
Limited postmortem analyses have documented severe pulmonary<SUP> </SUP>injury with histopathological changes of diffuse alveolar damage,<SUP>27</SUP><SUP>,</SUP><SUP>41</SUP><SUP>,</SUP><SUP>42</SUP><SUP> </SUP>consistent with findings in other reports of pneumonia due to<SUP> </SUP>human influenza virus.<SUP>43</SUP> Changes include filling of the alveolar<SUP> </SUP>spaces with fibrinous exudates and red cells, hyaline-membrane<SUP> </SUP>formation, vascular congestion, infiltration of lymphocytes<SUP> </SUP>into the interstitial areas, and the proliferation of reactive<SUP> </SUP>fibroblasts. Infection of type II pneumocytes occurs.<SUP>41</SUP><SUP>,</SUP><SUP>42</SUP> Antemortem<SUP> </SUP>biopsy of bone marrow specimens has shown reactive histiocytosis<SUP> </SUP>with hemophagocytosis in several patients, and lymphoid depletion<SUP> </SUP>and atypical lymphocytes have been noted in spleen and lymphoid<SUP> </SUP>tissues at autopsy.<SUP>13</SUP><SUP>,</SUP><SUP>15</SUP><SUP>,</SUP><SUP>27</SUP><SUP>,</SUP><SUP>42</SUP> Centrilobular hepatic necrosis<SUP> </SUP>and acute tubular necrosis have been noted in several instances.<SUP> </SUP>
Case Detection and Management
The possibility of influenza A (H5N1) should be considered in<SUP> </SUP>all patients with severe acute respiratory illness in countries<SUP> </SUP>or territories with animal influenza A (H5N1), particularly<SUP> </SUP>in patients who have been exposed to poultry (Table 4). However,<SUP> </SUP>some outbreaks in poultry were recognized only after sentinel<SUP> </SUP>cases occurred in humans. Early recognition of cases is confounded<SUP> </SUP>by the nonspecificity of the initial clinical manifestations<SUP> </SUP>and high background rates of acute respiratory illnesses from<SUP> </SUP>other causes. In addition, the possibility of influenza A (H5N1)<SUP> </SUP>warrants consideration in patients presenting with serious unexplained<SUP> </SUP>illness (e.g., encephalopathy or diarrhea) in areas with known<SUP> </SUP>influenza A (H5N1) activity in humans or animals.<SUP> </SUP>
<!-- null --><TABLE cellSpacing=0 cellPadding=0><TBODY><TR bgColor=#e8e8d1><TD><TABLE cellSpacing=2 cellPadding=2><TBODY><TR bgColor=#e8e8d1><TD vAlign=top align=middle bgColor=#ffffff>View this table:
<NOBR>[in this window]
[in a new window]
</NOBR> </TD><TD vAlign=top align=left>Table 4. Exposures That May Put a Person at Risk for Infection with Influenza A (H5N1).
</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>
The diagnostic yield of different types of samples and virologic<SUP> </SUP>assays is not well defined. In contrast to infections with human<SUP> </SUP>influenza virus, throat samples may have better yields than<SUP> </SUP>nasal samples. Rapid antigen assays may help provide support<SUP> </SUP>for a diagnosis of influenza A infection, but they have poor<SUP> </SUP>negative predictive value and lack specificity for influenza<SUP> </SUP>A (H5N1). The detection of viral RNA in respiratory samples<SUP> </SUP>appears to offer the greatest sensitivity for early identification,<SUP> </SUP>but the sensitivity depends heavily on the primers and assay<SUP> </SUP>method used. Laboratory confirmation of influenza A (H5N1) requires<SUP> </SUP>one or more of the following: a positive viral culture, a positive<SUP> </SUP>PCR assay for influenza A (H5N1) RNA, a positive immunofluorescence<SUP> </SUP>test for antigen with the use of monoclonal antibody against<SUP> </SUP>H5, and at least a fourfold rise in H5-specific antibody titer<SUP> </SUP>in paired serum samples.<SUP>44</SUP><SUP> </SUP>
Hospitalization
Whenever feasible while the numbers of affected persons are<SUP> </SUP>small, patients with suspected or proven influenza A (H5N1)<SUP> </SUP>should be hospitalized in isolation for clinical monitoring,<SUP> </SUP>appropriate diagnostic testing, and antiviral therapy. If patients<SUP> </SUP>are discharged early, both the patients and their families require<SUP> </SUP>education on personal hygiene and infection-control measures<SUP> </SUP>(Table 5). Supportive care with provision of supplemental oxygen<SUP> </SUP>and ventilatory support is the foundation of management.<SUP>1</SUP> Nebulizers<SUP> </SUP>and high?air flow oxygen masks have been implicated in<SUP> </SUP>the nosocomial spread of severe acute respiratory syndrome (SARS)<SUP> </SUP>and should be used only with strict airborne precautions.<SUP> </SUP>
<!-- null --><TABLE cellSpacing=0 cellPadding=0><TBODY><TR bgColor=#e8e8d1><TD><TABLE cellSpacing=2 cellPadding=2><TBODY><TR bgColor=#e8e8d1><TD vAlign=top align=middle bgColor=#ffffff>View this table:
<NOBR>[in this window]
[in a new window]
</NOBR> </TD><TD vAlign=top align=left>Table 5. Strategies to Prevent Avian Influenza A (H5N1) in Humans in a Nonpandemic Setting.
</TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>
Antiviral Agents
Patients with suspected influenza A (H5N1) should promptly receive<SUP> </SUP>a neuraminidase inhibitor pending the results of diagnostic<SUP> </SUP>laboratory testing. The optimal dose and duration of treatment<SUP> </SUP>with neuraminidase inhibitors are uncertain, and currently approved<SUP> </SUP>regimens likely represent the minimum required. These viruses<SUP> </SUP>are susceptible in vitro to oseltamivir and zanamivir.<SUP>46</SUP><SUP>,</SUP><SUP>47</SUP><SUP> </SUP>Oral osel-tamivir<SUP>46</SUP> and topical zanamivir are active in animal<SUP> </SUP>models of influenza A (H5N1).<SUP>48</SUP><SUP>,</SUP><SUP>49</SUP> Recent murine studies indicate<SUP> </SUP>that as compared with an influenza A (H5N1) strain from 1997,<SUP> </SUP>the strain isolated in 2004 requires higher oseltamivir doses<SUP> </SUP>and more prolonged administration (eight days) to induce similar<SUP> </SUP>antiviral effects and survival rates.<SUP>50</SUP> Inhaled zanamivir has<SUP> </SUP>not been studied in cases of influenza A (H5N1) in humans.<SUP> </SUP>
Early treatment will provide the greatest clinical benefit,<SUP>15</SUP><SUP> </SUP>although the use of therapy is reasonable when there is a likelihood<SUP> </SUP>of ongoing viral replication. Placebo-controlled clinical studies<SUP> </SUP>of oral oseltamivir<SUP>51</SUP><SUP>,</SUP><SUP>52</SUP> and inhaled zanamivir<SUP>53</SUP> comparing<SUP> </SUP>currently approved doses with doses that are twice as high found<SUP> </SUP>that the two doses had similar tolerability but no consistent<SUP> </SUP>difference in clinical or antiviral benefits in adults with<SUP> </SUP>uncomplicated human influenza. Although approved doses of oseltamivir<SUP> </SUP>(75 mg twice daily for five days in adults and weight-adjusted<SUP> </SUP>twice-daily doses for five days in children older than one year<SUP> </SUP>of age ? twice-daily doses of 30 mg for those weighing<SUP> </SUP>15 kg or less, 45 mg for those weighing more than 15 to 23 kg,<SUP> </SUP>60 mg for those weighing more than 23 to 40 kg, and 75 mg for<SUP> </SUP>those weighing more than 40 kg) are reasonable for treating<SUP> </SUP>early, mild cases of influenza A (H5N1), higher doses (150 mg<SUP> </SUP>twice daily in adults) and treatment for 7 to 10 days are considerations<SUP> </SUP>in treating severe infections, but prospective studies are needed.<SUP> </SUP>
High-level antiviral resistance to oseltamivir results from<SUP> </SUP>the substitution of a single amino acid in N1 neuraminidase<SUP> </SUP>(His274Tyr). Such variants have been detected in up to 16 percent<SUP> </SUP>of children with human influenza A (H1N1) who have received<SUP> </SUP>oseltamivir.<SUP>54</SUP> Not surprisingly, this resistant variant has<SUP> </SUP>been detected recently in several patients with influenza A<SUP> </SUP>(H5N1) who were treated with oseltamivir.<SUP>21</SUP> Although less infectious<SUP> </SUP>in cell culture and in animals than susceptible parental virus,<SUP>55</SUP><SUP> </SUP>oseltamivir-resistant H1N1 variants are transmissible in ferrets.<SUP>56</SUP><SUP> </SUP>Such variants retain full susceptibility to zanamivir and partial<SUP> </SUP>susceptibility to the investigational neuraminidase inhibitor<SUP> </SUP>peramivir in vitro.<SUP>57</SUP><SUP>,</SUP><SUP>58</SUP><SUP> </SUP>
In contrast to isolates from the 1997 outbreak, recent human<SUP> </SUP>influenza A (H5N1) isolates are highly resistant to the M2 inhibitors<SUP> </SUP>amantadine and rimantadine, and consequently, these drugs do<SUP> </SUP>not have a therapeutic role. Agents of clinical investigational<SUP> </SUP>interest for treatment include zanamivir, peramivir, long-acting<SUP> </SUP>topical neuraminidase inhibitors, ribavirin,<SUP>59</SUP><SUP>,</SUP><SUP>60</SUP> and possibly,<SUP> </SUP>interferon alfa.<SUP>61</SUP><SUP> </SUP>
Immunomodulators
Corticosteroids have been used frequently in treating patients<SUP> </SUP>with influenza A (H5N1), with uncertain effects. Among five<SUP> </SUP>patients given corticosteroids in 1997, two treated later in<SUP> </SUP>their course for the fibroproliferative phase of ARDS survived.<SUP> </SUP>In a randomized trial in Vietnam, all four patients given dexamethasone<SUP> </SUP>died. Interferon alfa possesses both antiviral and immunomodulatory<SUP> </SUP>activities, but appropriately controlled trials of immunomodulatory<SUP> </SUP>interventions are needed before routine use is recommended.<SUP> </SUP>
Prevention
Immunization
No influenza A (H5) vaccines are currently commercially available<SUP> </SUP>for humans. Earlier H5 vaccines were poorly immunogenic and<SUP> </SUP>required two doses of high hemagglutinin antigen content<SUP>62</SUP> or<SUP> </SUP>the addition of MF59 adjuvant<SUP>63</SUP> to generate neutralizing antibody<SUP> </SUP>responses. A third injection of adjuvanted 1997 H5 vaccine variably<SUP> </SUP>induced cross-reacting antibodies to human isolates from 2004.<SUP>64</SUP><SUP> </SUP>Reverse genetics has been used for the rapid generation of nonvirulent<SUP> </SUP>vaccine viruses from recent influenza A (H5) isolates,<SUP>65</SUP><SUP>,</SUP><SUP>66</SUP><SUP> </SUP>and several candidate vaccines are under study. One such inactivated<SUP> </SUP>vaccine with the use of a human H5N1 isolate from 2004 has been<SUP> </SUP>reported to be immunogenic at high hemagglutinin doses.<SUP>67</SUP> Studies<SUP> </SUP>with approved adjuvants like alum are urgently needed. Live<SUP> </SUP>attenuated, cold-adapted intranasal vaccines are also under<SUP> </SUP>development. These are protective against human influenza after<SUP> </SUP>a single dose in young children.<SUP>68</SUP><SUP> </SUP>
Hospital-Infection Control
Influenza is a well-recognized nosocomial pathogen.<SUP>4</SUP><SUP>,</SUP><SUP>5</SUP> Current<SUP> </SUP>recommendations are based on efforts to reduce transmission<SUP> </SUP>to health care workers and other patients in a nonpandemic situation<SUP> </SUP>and on the interventions used to contain SARS (Table 5).<SUP>1</SUP> The<SUP> </SUP>efficiency of surgical masks, even multiple ones,<SUP>69</SUP> is much<SUP> </SUP>less than that of N-95 masks, but they could be used if the<SUP> </SUP>latter are not available. Chemoprophylaxis with 75 mg of oseltamivir<SUP> </SUP>once daily for 7 to 10 days is warranted for persons who have<SUP> </SUP>had a possible unprotected exposure.<SUP>70</SUP><SUP>,</SUP><SUP>71</SUP> The use of preexposure<SUP> </SUP>prophylaxis warrants consideration if evidence indicates that<SUP> </SUP>the influenza A (H5N1) strain is being transmitted from person<SUP> </SUP>to person with increased efficiency or if there is a likelihood<SUP> </SUP>of a high-risk exposure (e.g., an aerosol-generating procedure).<SUP> </SUP>
Household and Close Contacts
Household contacts of persons with confirmed cases of influenza<SUP> </SUP>A (H5N1) should receive postexposure prophylaxis as described<SUP> </SUP>above. Contacts of a patient with proven or suspected virus<SUP> </SUP>should monitor their temperature and symptoms (Table 5). Although<SUP> </SUP>the risk of secondary transmission has appeared low to date,<SUP> </SUP>self-quarantine for a period of one week after the last exposure<SUP> </SUP>to an infected person is appropriate. If evidence indicates<SUP> </SUP>that person-to-person transmission may be occurring, quarantine<SUP> </SUP>of exposed contacts should be enforced. For others who have<SUP> </SUP>had an unprotected exposure to an infected person or to an environmental<SUP> </SUP>source (e.g., exposure to poultry) implicated in the transmission<SUP> </SUP>of influenza A (H5N1), postexposure chemoprophylaxis as described<SUP> </SUP>above may be warranted.<SUP> </SUP>
Conclusions
Infected birds have been the primary source of influenza A (H5N1)<SUP> </SUP>infections in humans in Asia. Transmission between humans is<SUP> </SUP>very limited at present, but continued monitoring is required<SUP> </SUP>to identify any increase in viral adaptation to human hosts.<SUP> </SUP>Avian influenza A (H5N1) in humans differs in multiple ways<SUP> </SUP>from influenza due to human viruses, including the routes of<SUP> </SUP>transmission, clinical severity, pathogenesis, and perhaps,<SUP> </SUP>response to treatment. Case detection is confounded by the nonspecificity<SUP> </SUP>of initial manifestations of illness, so that detailed contact<SUP> </SUP>and travel histories and knowledge of viral activity in poultry<SUP> </SUP>are essential. Commercial rapid antigen tests are insensitive,<SUP> </SUP>and confirmatory diagnosis requires sophisticated laboratory<SUP> </SUP>support. Unlike human influenza, avian influenza A (H5N1) may<SUP> </SUP>have higher viral titers in the throat than in the nose, and<SUP> </SUP>hence, analysis of throat swabs or lower respiratory samples<SUP> </SUP>may offer more sensitive means of diagnosis. Recent human isolates<SUP> </SUP>are fully resistant to M2 inhibitors, and increased doses of<SUP> </SUP>oral oseltamivir may be warranted for the treatment of severe<SUP> </SUP>illness. Despite recent progress, knowledge of the epidemiology,<SUP> </SUP>natural history, and management of influenza A (H5N1) disease<SUP> </SUP>in humans is incomplete. There is an urgent need for more coordination<SUP> </SUP>in clinical and epidemiologic research among institutions in<SUP> </SUP>countries with cases of influenza A (H5N1) and internationally.<SUP> </SUP>
<SUP></SUP>
The views expressed in this article do not necessarily reflect<SUP> </SUP>those of the WHO or other meeting sponsors.<SUP> </SUP>
We are indebted to the National Institute of Allergy and Infectious<SUP> </SUP>Diseases and the Wellcome Trust for their collaborative support<SUP> </SUP>of the WHO meeting; to Drs. Klaus Stohr and Alice Croisier of<SUP> </SUP>the Global Influenza Program at the WHO, Geneva; and to Drs.<SUP> </SUP>Peter Horby and Monica Guardo and the staff of the WHO Country<SUP> </SUP>Offices, Vietnam, for organizing the WHO consultation and for<SUP> </SUP>support in the preparation of the manuscript; and to Diane Ramm<SUP> </SUP>for help in the preparation of the manuscript.<SUP> </SUP>
Source Information
The writing committee consisted of the following: John H. Beigel, M.D., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.; Jeremy Farrar, D.Phil., Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Aye Maung Han, M.B., B.S., Department of Child Health, Institute of Medicine, Yangon, Myanmar; Frederick G. Hayden, M.D. (rapporteur), University of Virginia, Charlottesville; Randy Hyer, M.D., World Health Organization, Geneva; Menno D. de Jong, M.D., Ph.D., Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Sorasak Lochindarat, M.D., Queen Sirikit National Institute of Child Health, Bangkok, Thailand; Nguyen Thi Kim Tien, M.D., Ph.D., Pasteur Institute, Ho Chi Minh City, Vietnam; Nguyen Tran Hien, M.D., Ph.D., National Institute of Hygiene and Epidemiology, Hanoi; Tran Tinh Hien, M.D., Ph.D., Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Angus Nicoll, M.Sc., Health Protection Agency, London; Sok Touch, M.D., Ministry of Health, Phnom Penh, Cambodia; and Kwok-Yung Yuen, M.D., University of Hong Kong, Hong Kong SAR, China.
Address reprint requests to Dr. Hayden at the Department of Internal Medicine, P.O. Box 800473, University of Virginia Health Sciences Center, Charlottesville, VA 22908, or at fgh@virginia.edu<SCRIPT type=text/javascript><!-- var u = "fgh", d = "virginia.edu"; document.getElementById("em0").innerHTML = '<a href="mailto:' + u + '@' + d + '">' + u + '@' + d + '<\/a>'//--></SCRIPT> .
References
- <!-- null --><LI value=1>World Health Organization. WHO interim guidelines on clinical management of humans infected by influenza A(H5N1). February 20, 2004. (Accessed September 2, 2005, at http://www.who.int/csr/disease/avian_influenza/guidelines/Guidelines_Clinical%20Management_H5N1_rev.pdf.)<!-- HIGHWIRE ID="353:13:1374:1" --> <!-- /HIGHWIRE --><!-- null --> <LI value=2>Liu J, Xiao H, Lei F, et al. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 2005;309:1206-1206.<!-- HIGHWIRE ID="353:13:1374:2" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=3>Chen H, Smith JD, Zhang SY, et al. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 2005;436:191-192.<!-- HIGHWIRE ID="353:13:1374:3" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=4>Salgado CD, Farr BM, Hall KK, Hayden FG. Influenza in the acute hospital setting. Lancet Infect Dis 2002;2:145-155. [Erratum, Lancet Infect Dis 2002;2:383.]<!-- HIGHWIRE ID="353:13:1374:4" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=5>Bridges CB, Kuehnert MJ, Hall CB. Transmission of influenza: implications for control in health care settings. Clin Infect Dis 2003;37:1094-1101.<!-- HIGHWIRE ID="353:13:1374:5" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=6>Mounts AW, Kwong H, Izurieta HS, et al. Case-control study of risk factors for avian influenza A (H5N1) disease, Hong Kong, 1997. J Infect Dis 1999;180:505-508.<!-- HIGHWIRE ID="353:13:1374:6" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=7>Bridges CB, Lim W, Hu-Primmer J, et al. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997-1998. J Infect Dis 2002;185:1005-1010.<!-- HIGHWIRE ID="353:13:1374:7" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=8>Katz JM, Lim W, Bridges CB, et al. Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts. J Infect Dis 1999;180:1763-1770.<!-- HIGHWIRE ID="353:13:1374:8" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=9>Buxton Bridges C, Katz JM, Seto WH, et al. Risk of influenza A (H5N1) infection among health care workers exposed to patients with influenza A (H5N1), Hong Kong. J Infect Dis 2000;181:344-348.<!-- HIGHWIRE ID="353:13:1374:9" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=10>Liem NT, World Health Organization International Avian Influenza Investigation Team, Vietnam, Lim W. Lack of H5N1 avian influenza transmission to hospital employees, Hanoi, 2004. Emerg Infect Dis 2005;11:210-215.<!-- HIGHWIRE ID="353:13:1374:10" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=11>Schultsz C, Dong VC, Chau NVV, et al. Avian influenza H5N1 and healthcare workers. Emerg Infect Dis 2005;11:1158-1159.<!-- HIGHWIRE ID="353:13:1374:11" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=12>Apisarnthanarak A, Kitphati R, Thongphubeth K, et al. Atypical avian influenza (H5N1). Emerg Infect Dis 2004;10:1321-1324.<!-- HIGHWIRE ID="353:13:1374:12" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=13>Yuen KY, Chan PK, Peiris M, et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 1998;351:467-471.<!-- HIGHWIRE ID="353:13:1374:13" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=14>Chan PK. Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis 2002;34:Suppl 2:S58-S64.<!-- HIGHWIRE ID="353:13:1374:14" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=15>Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W, et al. Human disease from influenza A (H5N1), Thailand, 2004. Emerg Infect Dis 2005;11:201-209.<!-- HIGHWIRE ID="353:13:1374:15" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=16>Hien TT, Liem NT, Dung NT, et al. Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 2004;350:1179-1188.<!-- HIGHWIRE ID="353:13:1374:16" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=17>Keawcharoen J, Oraveerakul K, Kuiken T, et al. Avian influenza H5N1 in tigers and leopards. Emerg Infect Dis 2004;10:2189-2191.<!-- HIGHWIRE ID="353:13:1374:17" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=18>Thanawongnuwech R, Amonsin A, Tantilertcharoen R, et al. Probable tiger-to-tiger transmission of avian influenza H5N1. Emerg Infect Dis 2005;11:699-701.<!-- HIGHWIRE ID="353:13:1374:18" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=19>Kuiken T, Rimmelzwaan G, van Riel D, et al. Avian H5N1 influenza in cats. Science 2004;306:241-241.<!-- HIGHWIRE ID="353:13:1374:19" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=20>Ungchusak K, Auewarakul P, Dowell SF, et al. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med 2005;352:333-340.<!-- HIGHWIRE ID="353:13:1374:20" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=21>World Health Organization. WHO inter-country-consultation: influenza A/H5N1 in humans in Asia: Manila, Philippines, 6-7 May 2005. (Accessed September 2, 2005, at http://www.who.int/csr/resources/publications/influenza/WHO_CDS_CSR_GIP_2005_7/en/.)<!-- HIGHWIRE ID="353:13:1374:21" --><!-- /HIGHWIRE --><!-- null --> <LI value=22>de Jong MD, Cam BV, Qui PT, et al. Fatal Avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med 2005;352:686-691.<!-- HIGHWIRE ID="353:13:1374:22" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=23>Fouchier RAM, Schneeberger PM, Rozendaal FW, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 2004;101:1356-1361.<!-- HIGHWIRE ID="353:13:1374:23" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=24>Tam JS. Influenza A (H5N1) in Hong Kong: an overview. Vaccine 2002;20:Suppl 2:S77-S81.<!-- HIGHWIRE ID="353:13:1374:24" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=25>Nicholson KG. Human influenza. In: Nicholson KG, Webster RG, Hay AJ, eds. Textbook of influenza. Oxford, England: Blackwell Science, 1998:219-64.<!-- HIGHWIRE ID="353:13:1374:25" --><!-- /HIGHWIRE --><!-- null --> <LI value=26>Kaiser L, Briones MS, Hayden FG. Performance of virus isolation and Directigen Flu A to detect influenza A virus in experimental human infection. J Clin Virol 1999;14:191-197.<!-- HIGHWIRE ID="353:13:1374:26" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=27>Peiris JS, Yu WC, Leung CW, et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 2004;363:617-619.<!-- HIGHWIRE ID="353:13:1374:27" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=28>Hatta M, Gao P, Halfmann P, Kawaoka Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 2001;293:1840-1842.<!-- HIGHWIRE ID="353:13:1374:28" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=29>Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 2004;320:258-266.<!-- HIGHWIRE ID="353:13:1374:29" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=30>Seo SH, Hoffman E, Webster RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 2002;8:950-954.<!-- HIGHWIRE ID="353:13:1374:30" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=31>Cheung CY, Poon LL, Lau AS, et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 2002;360:1831-1837.<!-- HIGHWIRE ID="353:13:1374:31" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=32>Guan Y, Peiris JSM, Lipatov AS, et al. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 2002;99:8950-8955.<!-- HIGHWIRE ID="353:13:1374:32" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=33>Li KS, Guan Y, Wang J, et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004;430:209-213.<!-- HIGHWIRE ID="353:13:1374:33" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=34>Avian influenza A (H5N1). Weekly Epidemiol Rec 2004;79(7):65-70. (Also available at http://www.who.int/wer/2004/en/wer7907.pdf.)<!-- HIGHWIRE ID="353:13:1374:34" --><!-- /HIGHWIRE --><!-- null --> <LI value=35>Sims LD, Ellis TM, Liu KK, et al. Avian influenza in Hong Kong 1997-2002. Avian Dis 2003;47:Suppl:832-838.<!-- HIGHWIRE ID="353:13:1374:35" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=36>Horimoto T, Fukuda N, Iwatsuki-Horimoto K, et al. Antigenic differences between H5N1 human influenza viruses isolated in 1997 and 2003. J Vet Med Sci 2004;66:303-305.<!-- HIGHWIRE ID="353:13:1374:36" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=37>Sturm-Ramirez KM, Ellis T, Bousfield B, et al. Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J Virol 2004;78:4892-4901.<!-- HIGHWIRE ID="353:13:1374:37" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=38>Perkins LE, Swayne DE. Pathogenicity of a Hong Kong-origin H5N1 highly pathogenic avian influenza virus for emus, geese, ducks, and pigeons. Avian Dis 2002;46:53-63.<!-- HIGHWIRE ID="353:13:1374:38" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=39>Zitzow LA, Rowe T, Morken T, Shieh WJ, Zaki S, Katz JM. Pathogenesis of avian influenza A (H5N1) viruses in ferrets. J Virol 2002;76:4420-4429.<!-- HIGHWIRE ID="353:13:1374:39" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=40>Govorkova EA, Rehg JE, Krauss S, et al. Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. J Virol 2005;79:2191-2198.<!-- HIGHWIRE ID="353:13:1374:40" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=41>Uiprasertkul M, Puthavathana P, Sangsiriwut K, et al. Influenza A H5N1 replication sites in humans. Emerg Infect Dis 2005;11:1036-1041.<!-- HIGHWIRE ID="353:13:1374:41" --> [ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=42>To KF, Chan PK, Chan KF, et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol 2001;63:242-246.<!-- HIGHWIRE ID="353:13:1374:42" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=43>Guarner J, Shieh W-J, Dawson J, et al. Immunohistochemical and in situ hybridization studies of influenza A virus infection in human lungs. Am J Clin Pathol 2000;114:227-233.<!-- HIGHWIRE ID="353:13:1374:43" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=44>World Health Organization. Recommended laboratory tests to identify influenza A/H5 virus in specimens from patients with an influenza-like illness. 2005. (Accessed September 2, 2005, at http://www.who.int/csr/disease/avian_influenza/guidelines/avian_labtests1.pdf.)<!-- HIGHWIRE ID="353:13:1374:44" --><!-- /HIGHWIRE --><!-- null --> <LI value=45>Centers for Disease Control and Prevention. Update: notice to travelers about avian influenza A (H5N1). July 29, 2005. (Accessed September 2, 2005, at http://www.cdc.gov/travel/other/avian_flu_ah5n1_031605.htm.)<!-- HIGHWIRE ID="353:13:1374:45" --><!-- /HIGHWIRE --><!-- null --> <LI value=46>Leneva IA, Roberts N, Govorkova EA, Goloubeva OG, Webster RG. The neuraminidase inhibitor GS4104 (oseltamivir phosphate) is efficacious against A/Hong Kong/156/97 (H5N1) and A/Hong Kong/1074/99 (H9N2) influenza viruses. Antiviral Res 2000;48:101-115.<!-- HIGHWIRE ID="353:13:1374:46" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=47>Govorkova EA, Leneva IA, Goloubeva OG, Bush K, Webster RG. Comparison of efficacies of RWJ-270201, zanamivir, and oseltamivir against H5N1, H9N2, and other avian influenza viruses. Antimicrob Agents Chemother 2001;45:2723-2732.<!-- HIGHWIRE ID="353:13:1374:47" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=48>Gubareva LV, McCullers JA, Bethell RC, Webster RG. Characterization of influenza A/HongKong/156/97 (H5N1) virus in a mouse model and protective effect of zanamivir on H5N1 infection in mice. J Infect Dis 1998;178:1592-1596.<!-- HIGHWIRE ID="353:13:1374:48" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=49>Leneva IA, Goloubeva O, Fenton RJ, Tisdale M, Webster RG. Efficacy of zanamivir against avian influenza A viruses that possess genes encoding H5N1 internal proteins and are pathogenic in mammals. Antimicrob Agents Chemother 2001;45:1216-1224.<!-- HIGHWIRE ID="353:13:1374:49" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=50>Yen HL, Monto AS, Webster RG, Govorkova EA. Virulence may determine the necessary duration and dosage of oseltamivir treatment for highly pathogenic A/Vietnam/1203/04 influenza virus in mice. J Infect Dis 2005;192:665-672.<!-- HIGHWIRE ID="353:13:1374:50" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=51>Treanor JJ, Hayden FG, Vrooman PS, et al. Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: a randomized controlled trial. JAMA 2000;283:1016-1024.<!-- HIGHWIRE ID="353:13:1374:51" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=52>Cooper NJ, Sutton AJ, Abrams KR, Wailoo A, Turner D, Nicholson KG. Effectiveness of neuraminidase inhibitors in treatment and prevention of influenza A and B: systematic review and meta-analyses of randomised controlled trials. BMJ 2003;326:1235-1235.<!-- HIGHWIRE ID="353:13:1374:52" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=53>Monto AS, Fleming DM, Henry D, et al. Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenza A and B virus infections. J Infect Dis 1999;180:254-261.<!-- HIGHWIRE ID="353:13:1374:53" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=54>Ward P, Small I, Smith J, Suter P, Dutkowski R. Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J Antimicrob Chemother 2005;55:Suppl 1:i5-i21.<!-- HIGHWIRE ID="353:13:1374:54" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=55>Ives JAL, Carr JA, Mendel DB, et al. The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leaves virus severely compromised both in vitro and in vivo. Antiviral Res 2002;55:307-317.<!-- HIGHWIRE ID="353:13:1374:55" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=56>Herlocher ML, Truscon R, Elias S, et al. Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. J Infect Dis 2004;190:1627-1630.<!-- HIGHWIRE ID="353:13:1374:56" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=57>Wetherall NT, Trivedi T, Zeller J, et al. Evaluation of neuraminidase enzyme assays using different substrates to measure susceptibility of influenza virus clinical isolates to neuraminidase inhibitors: report of the neuraminidase inhibitor susceptibility network. J Clin Microbiol 2003;41:742-750.<!-- HIGHWIRE ID="353:13:1374:57" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=58>Gubareva LV, Webster RG, Hayden FG. Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants. Antimicrob Agents Chemother 2001;45:3403-3408.<!-- HIGHWIRE ID="353:13:1374:58" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=59>Madren LK, Shipman C Jr, Hayden FG. In vitro inhibitory effects of combinations of anti-influenza agents. Antivir Chem Chemother 1995;6:109-113.<!-- HIGHWIRE ID="353:13:1374:59" --> [ISI]<!-- /HIGHWIRE --><!-- null --> <LI value=60>Knight V, Gilbert BE. Ribavirin aerosol treatment of influenza. Infect Dis Clin North Am 1987;1:441-457.<!-- HIGHWIRE ID="353:13:1374:60" --> [Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=61>Baron S, Isaacs A. Absence of interferon in lungs from fatal cases of influenza. Br Med J 1962;5270:18-20.<!-- HIGHWIRE ID="353:13:1374:61" --> [Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=62>Treanor JJ, Wilkinson BE, Masseoud F, et al. Safety and immunogenicity of a recombinant hemagglutinin vaccine for H5 influenza in humans. Vaccine 2001;19:1732-1737.<!-- HIGHWIRE ID="353:13:1374:62" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=63>Nicholson KG, Colegate AE, Podda A, et al. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet 2001;357:1937-1943.<!-- HIGHWIRE ID="353:13:1374:63" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=64>Stephenson I, Bugarini R, Nicholson KG, et al. Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy. J Infect Dis 2005;191:1210-1215.<!-- HIGHWIRE ID="353:13:1374:64" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=65>Webby RJ, Webster RG. Are we ready for pandemic influenza? Science 2003;302:1519-1522.<!-- HIGHWIRE ID="353:13:1374:65" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=66>Webby RJ, Perez DR, Coleman JS, et al. Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 2004;363:1099-1103.<!-- HIGHWIRE ID="353:13:1374:66" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=67>Altman LC. Avian flu drug works in first tests. New York Times. August 7, 2005.<!-- HIGHWIRE ID="353:13:1374:67" --><!-- /HIGHWIRE --><!-- null --> <LI value=68>Belshe RB, Mendelman PM, Treanor J, et al. The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children. N Engl J Med 1998;338:1405-1412.<!-- HIGHWIRE ID="353:13:1374:68" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE --><!-- null --> <LI value=69>Derrick JL, Gomersall CD. Protecting healthcare staff from severe acute respiratory syndrome: filtration capacity of multiple surgical masks. J Hosp Infect 2005;59:365-368.<!-- HIGHWIRE ID="353:13:1374:69" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null --> <LI value=70>Hayden FG, Belshe R, Villanueva C, et al. Management of influenza in households: a prospective, randomized comparison of oseltamivir treatment with or without postexposure prophylaxis. J Infect Dis 2004;189:440-449.<!-- HIGHWIRE ID="353:13:1374:70" --> [CrossRef][ISI][Medline]<!-- /HIGHWIRE --><!-- null -->
- Welliver R, Monto AS, Carewicz O, et al. Effectiveness of oseltamivir in preventing influenza in household contacts: a randomized controlled trial. JAMA 2001;285:748-754.<!-- HIGHWIRE ID="353:13:1374:71" --> <NOBR>[Abstract/Full Text]</NOBR><!-- /HIGHWIRE -->
<TABLE cellSpacing=0 cellPadding=0 width=200 align=right border=0><TBODY><TR><TD width=20> </TD><TD bgColor=#336699><TABLE cellSpacing=1 cellPadding=0 border=0><TBODY><TR vAlign=top><TD align=middle width=200 bgColor=#e8e8d1>


























This article has been cited by other articles:
- Stevens, J., Blixt, O., Tumpey, T. M., Taubenberger, J. K., Paulson, J. C., Wilson, I. A. (2006). Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus. Science 312: 404-410 <NOBR>[Abstract] [Full Text] </NOBR>
- van Riel, D., Munster, V. J., de Wit, E., Rimmelzwaan, G. F., Fouchier, R. A. M., Osterhaus, A. D. M. E., Kuiken, T. (2006). H5N1 Virus Attachment to Lower Respiratory Tract. Science 312: 399-399 <NOBR>[Abstract] [Full Text] </NOBR>
- Kuiken, T., Holmes, E. C., McCauley, J., Rimmelzwaan, G. F., Williams, C. S., Grenfell, B. T. (2006). Host Species Barriers to Influenza Virus Infections. Science 312: 394-397 <NOBR>[Abstract] [Full Text] </NOBR>
- Germann, T. C., Kadau, K., Longini, I. M. Jr., Macken, C. A. (2006). From the Cover: Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. U. S. A. 103: 5935-5940 <NOBR>[Abstract] [Full Text] </NOBR>
- Gostin, L. (2006). Public Health Strategies for Pandemic Influenza: Ethics and the Law. JAMA 295: 1700-1704 <NOBR>[Full Text] </NOBR>
- Marsh, R. (2006). Hard decisions will have to be made: view from intensive care. BMJ 332: 790-791 <NOBR>[Full Text] </NOBR>
- Fedorko, D. P., Nelson, N. A., McAuliffe, J. M., Subbarao, K. (2006). Performance of Rapid Tests for Detection of Avian Influenza A Virus Types H5N1 and H9N2. J. Clin. Microbiol. 44: 1596-1597 <NOBR>[Full Text] </NOBR>
- Hsieh, S.-M., Chang, S.-C. (2006). Cutting Edge: Insufficient Perforin Expression in CD8+ T Cells in Response to Hemagglutinin from Avian Influenza (H5N1) Virus. J Immunol 176: 4530-4533 <NOBR>[Abstract] [Full Text] </NOBR>
- Gupta, R. K., Nguyen-Van-Tam, J. S., de Jong, M. D., Hien, T. T., Farrar, J. (2006). Oseltamivir Resistance in Influenza A (H5N1) Infection. NEJM 354: 1423-1424 <NOBR>[Full Text] </NOBR>
- Malakhov, M. P., Aschenbrenner, L. M., Smee, D. F., Wandersee, M. K., Sidwell, R. W., Gubareva, L. V., Mishin, V. P., Hayden, F. G., Kim, D. H., Ing, A., Campbell, E. R., Yu, M., Fang, F. (2006). Sialidase Fusion Protein as a Novel Broad-Spectrum Inhibitor of Influenza Virus Infection. Antimicrob. Agents Chemother. 50: 1470-1479 <NOBR>[Abstract] [Full Text] </NOBR>
- Granados, A., Goodman, C., Eklund, L. (2006). Pandemic influenza: using evidence on vaccines and antivirals for clinical decisions and policy making. Eur Respir J 27: 661-663 <NOBR>[Full Text] </NOBR>
- Bonten, M. J M, Prins, J. M (2006). Antibiotics in pandemic flu. BMJ 332: 248-249 <NOBR>[Full Text] </NOBR>
- Gostin, L. O. (2006). Medical Countermeasures for Pandemic Influenza: Ethics and the Law. JAMA 295: 554-556 <NOBR>[Full Text] </NOBR>
- Wong, S. S. Y., Yuen, K.-y. (2006). Avian Influenza Virus Infections in Humans. Chest 129: 156-168 <NOBR>[Abstract] [Full Text] </NOBR>
- de Jong, M. D., Thanh, T. T., Khanh, T. H., Hien, V. M., Smith, G. J.D., Chau, N. V., Cam, B. V., Qui, P. T., Ha, D. Q., Guan, Y., Peiris, J.S. M., Hien, T. T., Farrar, J. (2005). Oseltamivir Resistance during Treatment of Influenza A (H5N1) Infection. NEJM 353: 2667-2672 <NOBR>[Abstract] [Full Text] </NOBR>
- Moscona, A. (2005). Oseltamivir Resistance -- Disabling Our Influenza Defenses. NEJM 353: 2633-2636 <NOBR>[Full Text] </NOBR>
- Belshe, R. B. (2005). The Origins of Pandemic Influenza -- Lessons from the 1918 Virus. NEJM 353: 2209-2211 <NOBR>[Full Text] </NOBR>
- Macfarlane, J. T, Lim, W. S. (2005). Bird flu and pandemic flu. BMJ 331: 975-976 <NOBR>[Full Text] </NOBR>
<TABLE cellSpacing=0 cellPadding=0 width="100%" align=center border=0><TBODY><TR><TD align=middle><HR color=#000000 noShade SIZE=1>HOME | SEARCH | CURRENT ISSUE | PAST ISSUES | COLLECTIONS | HELP
Comments and questions? Please contact us.
The New England Journal of Medicine is owned, published, and copyrighted ? 2006 Massachusetts Medical Society. All rights reserved.
</TD></TR></TBODY></TABLE><SCRIPT language=JavaScript> <!-- function startTarget(windowname,wid,hei) { var dotpos = windowname.indexOf("."); if (dotpos > -1) { var tempwn = windowname.substring(0,dotpos) + windowname.substring(dotpos + 1, windowname.length); windowname = tempwn; } var sizestring = 'width=' + wid + ',height=' + hei; window.open('',windowname,'scrollbars,resizable,me nubar,' + sizestring + '\''); } // --> </SCRIPT><SCRIPT language=JavaScript><!--if ( top != self ){ top.location.href = unescape(window.location.pathname);}function ISIwin(windowname) { var dotpos = windowname.indexOf("."); if (dotpos > -1) { var tempwn = windowname.substring(0,dotpos) + windowname.substring(dotpos + 1, windowname.length); windowname = tempwn; } newwin = window.open('', windowname, 'width=700,height=400,left=30,top=30,screenX=30,sc reenY=30,resizable,scrollbars,toolbar,location,sta tus,menubar'); setTimeout('newwin.focus();',250);}//--></SCRIPT>