Announcement

Collapse
No announcement yet.

Strand-specific Dual RNA-seq of Bronchial Epithelial cells Infected with Influenza A/H3N2 Viruses Reveals Splicing of Gene Segment 6 and Novel Host-Virus Interactions

Collapse
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Strand-specific Dual RNA-seq of Bronchial Epithelial cells Infected with Influenza A/H3N2 Viruses Reveals Splicing of Gene Segment 6 and Novel Host-Virus Interactions

    J Virol. 2018 Jul 5. pii: JVI.00518-18. doi: 10.1128/JVI.00518-18. [Epub ahead of print]
    Strand-specific Dual RNA-seq of Bronchial Epithelial cells Infected with Influenza A/H3N2 Viruses Reveals Splicing of Gene Segment 6 and Novel Host-Virus Interactions.

    Fabozzi G1,2, Oler AJ3, Liu P4, Chen Y5, Mindaye S1, Dolan MA3, Kenney H6, Gucek M5, Zhu J4, Rabin RL7, Subbarao K8.
    Author information

    Abstract

    Host-influenza virus interplay at the transcript level has been extensively characterized in epithelial cells. Yet, there are no studies that simultaneously characterize human host and influenza A virus (IAV) genomes. We infected human bronchial epithelial BEAS-2B cells with two seasonal IAV/H3N2 strains, Brisbane/10/07 and Perth/16/09 (reference strains for past vaccine seasons) and the well-characterized laboratory strain Udorn/307/72. Strand-specific RNA-seq of the infected BEAS-2B cells allowed for simultaneous analysis of host and viral transcriptomes, in addition to pathogen genomes, to reveal changes in mRNA expression and alternative splicing (AS). In general, patterns of global and immune gene expression induced by the three IAVs were mostly shared. However, AS of host transcripts and small nuclear RNAs differed between the seasonal and laboratory strains. Analysis of viral transcriptomes showed deletions of the polymerase components (defective interfering (DI)-like RNAs) within the genome. Surprisingly, we found that the neuraminidase gene undergoes AS, and that the splicing event differs between seasonal and laboratory strains. Our findings reveal novel elements of the host-virus interaction and highlight the importance of RNA-seq in identifying molecular changes at the genome level that may contribute to shaping RNA-based innate immunity.IMPORTANCE The use of massively parallel RNA sequencing (RNA-seq) has revealed insights into human and pathogen genomes and their evolution. Dual RNA-seq allows simultaneous dissection of host and pathogen genomes and strand-specific RNA-seq provides information about the polarity of the RNA. This is important in the case of negative-strand RNA viruses like influenza, which generate positive (complementary and messenger RNA) and negative strand RNAs (genome) that differ in their potential to trigger innate immunity. Here, we characterize interactions between human bronchial epithelial cells and three influenza A/H3N2 strains using strand-specific dual RNA-seq. We focused on this subtype because of its epidemiological importance in causing significant morbidity and mortality during influenza epidemics. We report novel elements that differ between seasonal and laboratory strains highlighting the complexity of the host-virus interplay at the RNA level.


    PMID: 29976658 DOI: 10.1128/JVI.00518-18
Working...
X