Announcement

Collapse
No announcement yet.

J Biol Chem . Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • J Biol Chem . Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection


    J Biol Chem


    . 2020 Dec 2;jbc.REV120.015980.
    doi: 10.1074/jbc.REV120.015980. Online ahead of print.
    Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection


    Pablo Fuentes-Prior 1



    Affiliations

    Abstract

    The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs it also affects heart, liver, and kidneys among other organs of the patients, and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g. heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.

    Keywords: COVID-19; HAI-1/SPINT1; TMPRSS2; cell tropism; inhibitor; membrane-associated serine proteinases (MASPs); protein structure; protein-protein interaction; serine protease; serpin; structure-function; substrate specificity; tertiary structure; viral protein; virus entry.

Working...
X