Announcement

Collapse
No announcement yet.

J Virol . Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid protein is blocked by Simvastatin

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • J Virol . Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid protein is blocked by Simvastatin


    J Virol


    . 2021 Sep 22;JVI0139621.
    doi: 10.1128/JVI.01396-21. Online ahead of print.
    Direct activation of endothelial cells by SARS-CoV-2 nucleocapsid protein is blocked by Simvastatin


    Yisong Qian 1 2 , Tianhua Lei 1 , Parth S Patel 1 , Chi H Lee 3 , Paula Monaghan-Nichols 1 , Hong-Bo Xin 2 , Jianming Qiu 4 , Mingui Fu 1



    Affiliations

    Abstract

    Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multi-organ failure in patients with COVID-19. However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the SARS-CoV-2 viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved in endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkablely, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, MERS-CoV, HUB1-CoV and influenza virus H1N1 did not activate endothelial cells. These findings are well consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients. IMPORTANCE Coronavirus disease 2019 (COVID-19), caused by the betacoronavirus SARS-CoV-2, is a worldwide challenge for health-care systems. The leading cause of mortality in patients with COVID-19 is hypoxic respiratory failure from acute respiratory distress syndrome (ARDS). To date, pulmonary endothelial cells (ECs) have been largely overlooked as a therapeutic target in COVID-19, yet emerging evidence suggests that these cells contribute to the initiation and propagation of ARDS by altering vessel barrier integrity, promoting a pro-coagulative state, inducing vascular inflammation and mediating inflammatory cell infiltration. Therefore, a better mechanistic understanding of the vasculature is of utmost importance. In this study, we screened the SARS-CoV-2 viral proteins that potently activate human endothelial cells and found that nucleocapsid protein (NP) significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Our results provide insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.

Working...
X