Announcement

Collapse
No announcement yet.

J Transl Med . Analysis of SARS-CoV-2 RNA-dependent RNA Polymerase as a Potential Therapeutic Drug Target Using a Computational Approach

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • J Transl Med . Analysis of SARS-CoV-2 RNA-dependent RNA Polymerase as a Potential Therapeutic Drug Target Using a Computational Approach


    J Transl Med


    . 2020 Jul 7;18(1):275.
    doi: 10.1186/s12967-020-02439-0.
    Analysis of SARS-CoV-2 RNA-dependent RNA Polymerase as a Potential Therapeutic Drug Target Using a Computational Approach


    Syed Ovais Aftab 1 2 , Muhammad Zubair Ghouri 3 4 , Muhammad Umer Masood 1 , Zeshan Haider 1 , Zulqurnain Khan 5 , Aftab Ahmad 6 7 , Nayla Munawar 8



    Affiliations

    Abstract

    Background: The Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) outbreak originating in Wuhan, China, has raised global health concerns and the pandemic has now been reported on all inhabited continents. Hitherto, no antiviral drug is available to combat this viral outbreak.
    Methods: Keeping in mind the urgency of the situation, the current study was designed to devise new strategies for drug discovery and/or repositioning against SARS-CoV-2. In the current study, RNA-dependent RNA polymerase (RdRp), which regulates viral replication, is proposed as a potential therapeutic target to inhibit viral infection.
    Results: Evolutionary studies of whole-genome sequences of SARS-CoV-2 represent high similarity (> 90%) with other SARS viruses. Targeting the RdRp active sites, ASP760 and ASP761, by antiviral drugs could be a potential therapeutic option for inhibition of coronavirus RdRp, and thus viral replication. Target-based virtual screening and molecular docking results show that the antiviral Galidesivir and its structurally similar compounds have shown promise against SARS-CoV-2.
    Conclusions: The anti-polymerase drugs predicted here-CID123624208 and CID11687749-may be considered for in vitro and in vivo clinical trials.

    Keywords: Active site; Homology modeling; Molecular Docking; Phylogenetic tree; RdRp; SARS-CoV-2.

Working...
X