Announcement

Collapse
No announcement yet.

A Nanomolar Multivalent Ligand as Entry Inhibitor of the Hemagglutinin of Avian Influenza

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • A Nanomolar Multivalent Ligand as Entry Inhibitor of the Hemagglutinin of Avian Influenza

    J Am Chem Soc. 2013 Dec 30. [Epub ahead of print]
    A Nanomolar Multivalent Ligand as Entry Inhibitor of the Hemagglutinin of Avian Influenza.
    Waldmann M, Jirmann R, Hoelscher K, Wienke M, Niemeyer FC, Rehders D, Meyer B.
    Abstract

    Influenza virus attaches itself to sialic acids on the surface of epithelial cells of the upper respiratory tract of the host using its own protein hemagglutinin. Species specificity of influenza virus is determined by the linkages of the sialic acids. Birds have alpha2-3 and humans alpha2-6 linked sialic acids, respectively. Viral hemagglutinin is a homo-trimeric receptor and thus tri- or oligovalent ligands should have a high binding affinity. We describe the in silico design, chemical synthesis and binding analysis of a trivalent glycopeptide mimetic. This compound binds to hemagglutinin H5 of avian influenza with a dissociation constant of KD=446 nM and an inhibitory constant of KI=15 microM. In silico modeling shows that the ligand should also bind to hemagglutinin H7 of the virus that causes the current influenza outbreak in China. The trivalent glycopeptide mimetic and analogues have the potential to block many different influenza viruses.

    PMID:
    24377426
    [PubMed - as supplied by publisher]

    Influenza virus attaches itself to sialic acids on the surface of epithelial cells of the upper respiratory tract of the host using its own protein hemagglutinin. Species specificity of influenza virus is determined by the linkages of the sialic acids. Birds and humans have α2-3 and α2-6 linked sial …
Working...
X