Avian Dis
. 2020 Dec 1;64(4):427-436.
doi: 10.1637/aviandiseases-D-20-00014.
Protection of Chickens with Maternal Immunity Against Avian Influenza Virus (AIV) by Vaccination with a Novel Recombinant Newcastle Disease Virus Vector
Magdalena Murr 1 , Christian Grund 2 , Angele Breithaupt 3 , Thomas C Mettenleiter 1 , Angela R?mer-Oberd?rfer 1
Affiliations
- PMID: 33347549
- DOI: 10.1637/aviandiseases-D-20-00014
Abstract
Newcastle disease virus (NDV) vectors expressing avian influenza virus (AIV) hemagglutinin of subtype H5 protect specific pathogen-free chickens from Newcastle disease and avian influenza. However, maternal AIV antibodies (AIV-MDA+) are known to interfere with active immunization by influencing vaccine virus replication and gene expression, resulting in inefficient protection. To overcome this disadvantage, we inserted a transgene encoding a truncated soluble hemagglutinin (HA) in addition to the gene encoding membrane-bound HA from highly pathogenic avian influenza virus (HPAIV) H5N1 into lentogenic NDV Clone 30 genome (rNDVsolH5_H5) to overexpress H5 antigen. Vaccination of 3-wk-old AIV-MDA+ chickens with rNDVsolH5_H5 and subsequent challenge infection with HPAIV H5N1 3 wk later resulted in 100% protection. Vaccination of younger chickens with higher AIV-MDA levels 1 and 2 wk after hatch resulted in protection rates of 40% and 85%, respectively. However, all vaccinated chickens showed strongly reduced shedding of challenge virus compared with age-matched, nonvaccinated control chickens. All control chickens succumbed to the HPAIV infection with a grading in disease progression between the three groups, indicating the influence of AIV-MDAs even at a low level. Furthermore, the shedding and serologic data gathered after immunization indicate sufficient replication of the vaccine virus, which leads to the assumption that lower protection rates in younger AIV-MDA+ chickens are caused by an H5 antigen-specific block and not by the interference of the AIV-MDA and the vaccine virus itself. In summary, solid protective efficacy and reduced virus transmission were achieved in 3-wk-old AIV-MDA+ chickens, which is relevant especially in regions endemically infected with HPAIV H5N1.
Keywords: DIVA; H5N1; Newcastle disease; avian influenza; maternal immunity; vector vaccine.