Announcement

Collapse
No announcement yet.

Hydrogen Bond Variations of Influenza A Viruses During Adaptation in Human

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Hydrogen Bond Variations of Influenza A Viruses During Adaptation in Human

    Sci Rep. 2017 Oct 30;7(1):14295. doi: 10.1038/s41598-017-14533-3.
    Hydrogen Bond Variations of Influenza A Viruses During Adaptation in Human.

    Luo J1,2, Deng L3,4, Ding X3,4, Quan L3,4, Wu A5,6, Jiang T7,8,9.
    Author information

    Abstract

    Many host specific mutations have been detected in influenza A viruses (IAVs). However, their effects on hydrogen bond (H-bond) variations have rarely been investigated. In this study, 60 host specific sites were identified in the internal proteins of avian and human IAVs, 27 of which contained mutations with effects on H-bonds. Besides, 30 group specific sites were detected in HA and NA. Twenty-six of 36 mutations existing at these group specific sites caused H-bond loss or formation in at least one subtype. The number of mutations in isolations of 2009 pandemic H1N1, human-infecting H5N1 and H7N9 varied. The combinations of mutations and H-bond changes in these three subtypes of IAVs were also different. In addition, the mutations in isolations of H5N1 distributed more scattered than those in 2009 pandemic H1N1 and H7N9. Eight wave specific mutations in isolations of the fifth H7N9 wave were also identified. Three of them, R140K in HA, Y170H in NA, and R340K in PB2, were capable of resulting in H-bond loss. As mentioned above, these host or group or wave specific H-bond variations provide us with a new field of vision for understanding the changes of structural features in the human adaptation of IAVs.


    PMID: 29085020 DOI: 10.1038/s41598-017-14533-3
    Free full text
Working...
X