Announcement

Collapse
No announcement yet.

PLoS Pathogens. New World Bats Harbor Diverse Influenza A Viruses

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • PLoS Pathogens. New World Bats Harbor Diverse Influenza A Viruses

    [Source: PLoS Pathogens, full page: (LINK). Abstract, edited.]


    Research Article

    New World Bats Harbor Diverse Influenza A Viruses

    Suxiang Tong, Xueyong Zhu, Yan Li, Mang Shi, Jing Zhang, Melissa Bourgeois, Hua Yang, Xianfeng Chen, Sergio Recuenco, Jorge Gomez, Li-Mei Chen, Adam Johnson, Ying Tao, Cyrille Dreyfus, Wenli Yu, Ryan McBride, Paul J. Carney, Amy T. Gilbert, Jessie Chang, Zhu Guo, Charles T. Davis, James C. Paulson, James Stevens, Charles E. Rupprecht, Edward C. Holmes, Ian A. Wilson, Ruben O. Donis.


    Abstract

    Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.


    Author Summary

    Previous studies indicated that a novel influenza A virus (H17N10) was circulating in fruit bats from Guatemala (Central America). Herein, we investigated whether similar viruses are present in bat species from South America. Analysis of rectal swabs from bats sampled in the Amazon rainforest region of Peru identified another new influenza A virus from bats that is phylogenetically distinct from the one identified in Guatemala. The genes that encode the surface proteins of the new virus from the flat-faced fruit bat were designated as new subtype H18N11. Serologic testing of blood samples from several species of Peruvian bats indicated a high prevalence of antibodies to the surface proteins. Phylogenetic analyses demonstrate that bat populations from Central and South America maintain as much influenza virus genetic diversity in some gene segments as all other mammalian and avian species combined. The crystal structures of the hemagglutinin and neuraminidase proteins indicate that sialic acid is not a receptor for virus attachment nor a substrate for release, suggesting a novel mechanism of influenza A virus attachment and activation of membrane fusion for entry into host cells. In summary, our findings indicate that bats constitute a potentially important reservoir for influenza viruses.
    _____

    Citation: Tong S, Zhu X, Li Y, Shi M, Zhang J, et al. (2013) New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathog 9(10): e1003657. doi:10.1371/journal.ppat.1003657

    Editor: Kanta Subbarao, National Institutes of Health, United States of America

    Received: January 19, 2013; Accepted: August 9, 2013; Published: October 10, 2013

    This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

    Funding: The work was supported in part by NIH grant AI058113 (IAW and JCP), a contract from the CDC (JCP), and the Skaggs Institute for Chemical Biology. Portions of this research were conducted at SSRL, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy (DOE), Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by NIH, National Center for Research Resources, Biomedical Technology Program (P41RR001209), and the National Institute of General Medical Sciences. The GM/CA CAT 23-ID-D beamline has been funded in whole or in part with federal funds from National Cancer Institute (Y1-CO-1020) and NIGMS (Y1-GM-1104). Supporting institutions for SER-CAT 22-ID may be found at www.ser-cat.org/members.html. Use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract no. DE-AC02-06CH11357 and contract no. W-31-109-Eng-38. Glycans for the arrays were provided by the Consortium for Functional Glycomics funded by NIH grants GM062116 and GM098791. This is publication 21954 from The Scripps Research Institute. ECH was supported in part by NIH grant GM080533-06. The study was supported in part by the Global Disease Detection program TSC funds in the Centers for Disease Control and Prevention, Atlanta, Georgia (ST) and in part by a collaborative Centers for Disease Control and Prevention-University of Georgia Seed Award (ST). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

    Competing interests: The authors have declared that no competing interests exist.


    -
    -------
Working...
X