Published16 March 2024
DOI https://doi.org/10.1038/s41598-024-56839-z
Wang, H., Li, W., Shi, L. et al.
Abstract
A within-host and between-host hand, foot and mouth disease (HFMD) mathematical model is established and the affect of optimal control in its within-host part on HFMD transmission is studied. Through define two basic reproduction numbers, by using the fast-slow system analysis method of time scale, the global stabilities of the between-host (slow) system and within-host (fast) system are researched, respectively. An optimal control problem with drug-treatment control on coupled within-host and between-host HFMD model is formulated and analysed theoretically. Finally, the purposed optimal control measures are applied to the actual HFMD epidemic analysis in Zhejiang Province, China from April 1, 2021 to June 30, 2021. The numerical results show that the drug control strategies can reduce the virus load per capita and can effectively prevent large-scale outbreaks of HFMD.
DOI https://doi.org/10.1038/s41598-024-56839-z
Wang, H., Li, W., Shi, L. et al.
Abstract
A within-host and between-host hand, foot and mouth disease (HFMD) mathematical model is established and the affect of optimal control in its within-host part on HFMD transmission is studied. Through define two basic reproduction numbers, by using the fast-slow system analysis method of time scale, the global stabilities of the between-host (slow) system and within-host (fast) system are researched, respectively. An optimal control problem with drug-treatment control on coupled within-host and between-host HFMD model is formulated and analysed theoretically. Finally, the purposed optimal control measures are applied to the actual HFMD epidemic analysis in Zhejiang Province, China from April 1, 2021 to June 30, 2021. The numerical results show that the drug control strategies can reduce the virus load per capita and can effectively prevent large-scale outbreaks of HFMD.