Announcement

Collapse
No announcement yet.

Rev Med Virol . Comparative analysis of the genome structure and organization of the Middle East respiratory syndrome coronavirus (MERS-CoV) 2012 to 2019 revealing evidence for virus strain barcoding, zoonotic transmission, and selection pressure

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Rev Med Virol . Comparative analysis of the genome structure and organization of the Middle East respiratory syndrome coronavirus (MERS-CoV) 2012 to 2019 revealing evidence for virus strain barcoding, zoonotic transmission, and selection pressure


    Rev Med Virol


    . 2020 Aug 17;e2150.
    doi: 10.1002/rmv.2150. Online ahead of print.
    Comparative analysis of the genome structure and organization of the Middle East respiratory syndrome coronavirus (MERS-CoV) 2012 to 2019 revealing evidence for virus strain barcoding, zoonotic transmission, and selection pressure


    Mohamed M Ba Abduallah 1 , Maged Gomaa Hemida 2 3



    Affiliations

    Abstract

    The Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in late 2012 in Saudi Arabia. For this study, we conducted a large-scale comparative genome study of MERS-CoV from both human and dromedary camels from 2012 to 2019 to map any genetic changes that emerged in the past 8 years. We downloaded 1309 submissions, including 308 full-length genome sequences of MERS-CoV available in GenBank from 2012 to 2019. We used bioinformatics tools to describe the genome structure and organization of the virus and to map the most important motifs within various regions/genes throughout the genome over the past 8 years. We also monitored variations/mutations among these sequences since its emergence. Our phylogenetic analyses suggest that the cluster within African camels is derived by S gene. We identified some prominent motifs within the ORF1ab, S gene and ORF-5, which may be used for barcoding the African camel lineages of MERS-CoV. Furthermore, we mapped some sequence patterns that support the zoonotic origin of the virus from dromedary camels. Other sequences identified selection pressures, particularly within the N gene and the 5' UTR. Further studies are required for careful monitoring of the MERS-CoV genome to identify any potential significant mutations in the future.

    Keywords: MERS-CoV; bioinformatics; coronaviruses; evolution; genome; organization; phylogenetic analysis.

Working...
X