Announcement

Collapse
No announcement yet.

Talanta . A simplified viral RNA extraction method based on magnetic nanoparticles for fast and high-throughput detection of SARS-CoV-2

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Talanta . A simplified viral RNA extraction method based on magnetic nanoparticles for fast and high-throughput detection of SARS-CoV-2


    Talanta


    . 2023 Mar 23;258:124479.
    doi: 10.1016/j.talanta.2023.124479. Online ahead of print.
    A simplified viral RNA extraction method based on magnetic nanoparticles for fast and high-throughput detection of SARS-CoV-2


    Haodong Cui 1 , Wenxing Song 2 , Xiaoling Ru 3 , Wen Fu 1 , Ling Ji 4 , Wenhua Zhou 5 , Zhen Zhao 6 , Guangbo Qu 7 , Xue-Feng Yu 2 , Guibin Jiang 7



    Affiliations

    Abstract

    The ongoing outbreak of the novel coronavirus disease 2019 (COVID-19) draws worldwide concerns due to its long incubation period and strong infectivity. Although RT-PCR-based methods are being widely applied for clinical diagnosis, timely and accurate diagnosis towards COVID-19 causing virus, the SARS-CoV-2, is still limited due to labor-intensive and time-consuming operations. Herein, we report a new viral RNA extraction method based on poly-(amino ester) with carboxyl group (PC)-coated magnetic nanoparticles (pcMNPs) for the sensitive detection of SARS-CoV-2. This method combines the lysis and binding steps into one step, and refines multiple washing steps into one step, giving a turnaround time of less than 9 min. Furthermore, the extracted pcMNP-RNA complexes can be directly introduced into subsequent RT-PCR reactions without elution. This simplified viral RNA method could be well adapted in fast manual and automated high-throughput nucleic acids extraction protocols suitable for different scenarios. A high sensitivity down to 100 copies/mL and a linear correlation between 100 and 106 copies/mL of SARS-CoV-2 pseudovirus particles are achieved in both protocols. Benefitting from the simplicity and excellent performances, this new method can dramatically improve the efficiency and reduce operational requirements for the early clinical diagnosis and large-scale SARS-CoV-2 nucleic acid screening.

    Keywords: Elution-free; Fast extraction; Magnetic nanoparticles; Molecular diagnosis; SARS-CoV-2.

Working...
X