Announcement

Collapse
No announcement yet.

Mol Cell Pediatr . Combined RT-qPCR and pyrosequencing of a Spike glycoprotein polybasic cleavage motif can uncover pediatric SARS-CoV-2 infections associated with heterogeneous presentation

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Mol Cell Pediatr . Combined RT-qPCR and pyrosequencing of a Spike glycoprotein polybasic cleavage motif can uncover pediatric SARS-CoV-2 infections associated with heterogeneous presentation


    Mol Cell Pediatr


    . 2021 Apr 24;8(1):4.
    doi: 10.1186/s40348-021-00115-x.
    Combined RT-qPCR and pyrosequencing of a Spike glycoprotein polybasic cleavage motif can uncover pediatric SARS-CoV-2 infections associated with heterogeneous presentation


    Patrick Philipp Weil 1 , Jacqueline Hentschel 1 , Frank Schult 2 , Anton Pembaur 1 , Beniam Ghebremedhin 3 , Olivier Mboma 2 , Andreas Heusch 2 , Anna-Christin Reuter 1 , Daniel M?ller 1 , Stefan Wirth 2 , Malik Aydin 4 , Andreas C W Jenke 5 , Jan Postberg 6



    Affiliations

    Abstract

    Background: Reverse transcription of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (+)RNA genome and subgenomic RNAs (sgRNAs) and subsequent quantitative polymerase chain reaction (RT-qPCR) is the reliable diagnostic gold standard for COVID-19 diagnosis and the identification of potential spreaders. Apart from clinical relevance and containment, for specific questions, it might be of interest to (re)investigate cases with low SARS-CoV-2 load, where RT-qPCR alone can deliver conflicting results, even though these cases might neither be clinically relevant nor significant for containment measures, because they might probably not be infectious. In order to expand the diagnostic bandwidth for non-routine questions, particularly for the reliable discrimination between negative and false-negative specimens associated with high CT values, we combined the RT-qPCR workflow with subsequent pyrosequencing of a S-gene amplicon. This expansion can help to confirm SARS-CoV-2 infections without the demand of confirmative antibody testing, which requires to summon patients again for blood sampling few to several weeks after symptom onset.
    Results: We successfully established a combined RT-qPCR and S-gene pyrosequencing method which can be optionally exploited after routine diagnostics. This allows a reliable interpretation of RT-qPCR results in specimens with relatively low viral loads and close to the detection limits of qPCR. After laboratory implementation, we tested the combined method in a large pediatric cohort from two German medical centers (n=769). Pyrosequencing after RT-qPCR enabled us to uncover 5 previously unrecognized cases of pediatric SARS-CoV-2-associated diseases, mainly exhibiting mild and heterogeneous presentation-apart from a single case of multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2, who was hospitalized in the course of the study.
    Conclusions: The proposed protocol allows a specific and sensitive confirmation of SARS-CoV-2 infections close to the detection limits of RT-qPCR. The tested biotinylated primers do not negatively affect the RT-qPCR pipeline and thus can be optionally applied to enable deeper inspection of RT-qPCR results by subsequent pyrosequencing. Moreover, due to the incremental transmission of SARS-CoV-2 variants of concern, we note that the used strategy can uncover (Spike) P681H allowing the pre-selection of SARS-CoV-2 B.1.1.7 candidate specimens for deep sequencing.

    Keywords: (+)RNA; COVID-19 surveillance; Epidemiology; Pediatric SARS-CoV-2-associated diseases.

Working...
X