Announcement

Collapse
No announcement yet.

Cell culture-based production of defective interfering particles for influenza antiviral therapy

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Cell culture-based production of defective interfering particles for influenza antiviral therapy

    Appl Microbiol Biotechnol. 2017 Dec 5. doi: 10.1007/s00253-017-8660-3. [Epub ahead of print]
    Cell culture-based production of defective interfering particles for influenza antiviral therapy.

    Wasik MA1, Eichwald L2, Genzel Y2, Reichl U2,3.
    Author information

    Abstract

    Defective interfering particles (DIPs) lack an essential portion of the virus genome, but retain signals for replication and packaging, and therefore, interfere with standard virus (STV) replication. Due to this property, DIPs can be potential antivirals. The influenza A virus DIP DI244, generated during propagation in chicken eggs, has been previously described as a potential candidate for influenza antiviral therapy. As a cell culture-based manufacturing process would be more suitable to fulfill large-scale production needs of an antiviral and enables full process control in closed systems, we investigated options to produce DI244 in the avian cell line AGE1.CR.pIX in chemically defined suspension culture. With a DI244 fraction of 55.8% compared to STV, the highest DI244 yield obtained from 50 million cells was 4.6 ? 109 vRNA copies/mL at 12 h post infection. However, other defective genomes were also detected. Since these additionally produced defective particles are non-infectious, they might be still useful in antiviral therapies. In case they would interfere with quality of the final product, we examined the impact of virus seeds and selected process parameters on DI244 yield and contamination level with other defective particles. With a DI244 fraction of 5.5%, the yield obtained was 1.7 ? 108 vRNA copies/mL but now without additional defective genomes. Although the DI244 yield might be decreased in this case, such controlled manufacturing conditions are not available in chicken eggs. Overall, the application of these findings can support design and optimization of a cell culture-based production process for DIPs to be used as antivirals.


    KEYWORDS:

    Cell culture; DI244 antiviral; Defective interfering particles; Influenza A virus; Suspension cell line

    PMID: 29204901 DOI: 10.1007/s00253-017-8660-3
Working...
X