Announcement

Collapse
No announcement yet.

Impact of Delivery Method on Antiviral Activity of Phosphodiester, Phosphorothioate, and Phosphoryl Guanidine Oligonucleotides in MDCK Cells Infected with H5N1 Bird Flu Virus

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Impact of Delivery Method on Antiviral Activity of Phosphodiester, Phosphorothioate, and Phosphoryl Guanidine Oligonucleotides in MDCK Cells Infected with H5N1 Bird Flu Virus

    Mol Biol (Mosk). 2017 Jul-Aug;51(4):717-723. doi: 10.7868/S0026898417040139.
    [Impact of Delivery Method on Antiviral Activity of Phosphodiester, Phosphorothioate, and Phosphoryl Guanidine Oligonucleotides in MDCK Cells Infected with H5N1 Bird Flu Virus].

    [Article in Russian]
    Levina AS1,2, Repkova MN1,2, Chelobanov BP1,2, Bessudnova EV3, Mazurkova NA4, Stetsenko DA1, Zarytova VF1,2,5.
    Author information

    Abstract

    We have previously described nanocomposites containing conjugates or complexes of native oligodeoxyribonucleotides with poly-L-lysine and TiO2 nanoparticles. We have shown that these nanocomposites efficiently suppressed influenza A virus reproduction in MDCK cells. Here, we have synthesized previously undescribed nanocomposites that consist of TiO2 nanoparticles and polylysine conjugates with oligonucleotides that contain phosphoryl guanidine or phosphorothioate internucleotide groups. These nanocomposites have been shown to exhibit antiviral activity in MDCK cells infected with H5N1 influenza A virus. The nanocomposites containing phosphorothioate oligonucleotides inhibited virus replication ~130-fold. More potent inhibition, i.e., ~5000-fold or ~4600-fold, has been demonstrated by nanocomposites that contain phosphoryl guanidine or phosphodiester oligonucleotides, respectively. Free oligonucleotides have been nearly inactive. The antiviral activity of oligonucleotides of all three types, when delivered by Lipofectamine, has been significantly lower compared to the oligonucleotides delivered in the nanocomposites. In the former case, the phosphoryl guanidine oligonucleotide has appeared to be the most efficient; it has inhibited the virus replication by a factor of 400. The results make it possible to consider phosphoryl guanidine oligonucleotides, along with other oligonucleotide derivatives, as potential antiviral agents against H5N1 avian flu virus.


    KEYWORDS:

    conjugates; influenza A virus; inhibitors; nanoparticles; oligonucleotides; replication

    PMID: 28900092 DOI: 10.7868/S0026898417040139
Working...
X