Announcement

Collapse
No announcement yet.

Human-Mediated Dispersal of Insecticide Resistant Aedes Aegypti Mosquito

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Human-Mediated Dispersal of Insecticide Resistant Aedes Aegypti Mosquito

    Human-Mediated Marine Dispersal Influences the Population Structure of Aedes aegypti in the Philippine Archipelago
    • Published: June 3, 2015
    • DOI: 10.1371/journal.pntd.000382
    Abstract

    Background

    Dengue virus (DENV) is an extraordinary health burden on global scale, but still lacks effective vaccine. The Philippines is endemic for dengue fever, but massive employment of insecticides favored the development of resistance mutations in its major vector, Aedes aegypti. Alternative vector control strategies consist in releasing artificially modified mosquitos in the wild, but knowledge on their dispersal ability is necessary for a successful implementation. Despite being documented that Ae. aegypti can be passively transported for long distances, no study to date has been aimed at understanding whether human marine transportation can substantially shape the migration patterns of this mosquito. With thousands of islands connected by a dense network of ships, the Philippines is an ideal environment to fill this knowledge gap.

    Methodology/principal findings

    Larvae of Ae. aegypti from 15 seaports in seven major islands of central-western Philippines were collected and genotyped at seven microsatellite loci. Low genetic structure and considerable gene flow was found in the area. Univariate and multivariate regression analyses suggested that anthropic factors (specifically the amount of processed cargo and human population density) can explain the observed population structure, while geographical distance was not correlated. Interestingly, cargo shipments seem to be more efficient than passenger ships in transporting Ae. aegypti. Bayesian clustering confirmed that Ae. aegypti from busy ports are more genetically similar, while populations from idle ports are relatively structured, regardless of the geographical distance that separates them.
    Conclusions/significance

    The results confirmed the pivotal role of marine human-mediated long-range dispersal in determining the population structure of Ae. aegypti. Hopefully corroborated by further research, the present findings could assist the design of more effective vector control strategies.


    Author Summary

    Dengue fever threatens the health of millions in the tropics and its causative agent, dengue virus, is mainly transmitted by the mosquito Aedes aegypti. To control the spread of the virus, insecticides have been abundantly used but Ae. aegypti has developed a genetic resistance to them. Currently, alternative methods are being tested wherein artificially modified mosquitos are released in the wild to interfere with the mating of natural populations. It is important then to understand how the mosquito spreads in the environment. It is known that Ae. aegytpi can be passively transported for long distances by human vehicles, but it was not clear how common this event is, especially in case of marine transportation. In population genetics, a basic assumption says that if populations frequently exchange migrants, they become genetically more similar than relatively isolated populations. We estimated the genetic similarity between Ae. aegypti collected in the Philippines from 15 seaports of different sizes and ship connectivity. The mosquitos from busy ports, even distant ones, were genetically similar, while in the small ports, even close ones, Ae. aegypti were relatively differentiated. It was also suggested that Ae. aegypti's dispersal is affected by cargo shipments more than passenger ships.

    Link to full article:

    http://journals.plos.org/plosntds/ar...l.pntd.0003829

    ?Addressing chronic disease is an issue of human rights ? that must be our call to arms"
    Richard Horton, Editor-in-Chief The Lancet

    ~~~~ Twitter:@GertvanderHoek ~~~ GertvanderHoek@gmail.com ~~~
Working...
X