Environ Geochem Health
. 2024 Nov 28;47(1):3.
doi: 10.1007/s10653-024-02293-9. Occurrence of selected Covid-19 drugs in surface water resources: a review of their sources, pathways, receptors, fate, ecotoxicity, and possible interactions with heavy metals in aquatic ecosystems
S R Maremane 1 , G N Belle 2 3 , P J Oberholster 2 , E O Omotola 4
Affiliations
in English, German, French, Spanish, Italian
The outbreak of the coronavirus disease 2019 (Covid-19) led to the high consumption of antibiotics such as azithromycin as well as corticosteroids such as prednisone, prednisolone, and dexamethasone used to treat the disease. Seemingly, the concentrations of these four Covid-19 drugs increased in wastewater effluents and surface water resources. This is due to the failure of traditional wastewater treatment facilities (WWTFs) to eliminate pharmaceuticals from wastewater. Therefore, the objective of the current research was to review the present state of literature on the occurrence of four Covid-19 drugs in water resources, the associated risks and toxicity, their fate, as well as the emergence of combined pollutants of Covid-19 drugs and heavy metals. From late 2019 to date, azithromycin was observed at concentrations of 935 ng/L, prednisone at 433 ng/L, prednisolone at 0.66 ng/L, and dexamethasone at 360 ng/L, respectively, in surface water resources. These concentrations had increased substantially in water resources and were all attributed to pollution by wastewater effluents and the rise in Covid-?19 infections. This phenomenon was also exacerbated by the observation of the pseudo-persistence of Covid-19 drugs, long half-life periods, as well as the excretion of Covid-19 drugs from the human body with about 30?90% of the parent drug. Nonetheless, the aquatic and human health toxicity and risks of Covid-19 drugs in water resources are unknown as the concentrations are deemed too low; thus, neglecting the possible long-term effects. Also, the accumulation of Covid-19 drugs in water resources presents the possible development of combined pollutants of Covid-19 drugs and heavy metals that are yet to be investigated. The risks and toxicity of the combined pollutants, including the fate of the Covid-19 drugs in water resources remains a research gap that undoubtably needs to be investigated.
Keywords: Combined pollutants; Covid-19 drugs; Emerging pollutants; Heavy metals; Surface water resources; Wastewater effluent.
. 2024 Nov 28;47(1):3.
doi: 10.1007/s10653-024-02293-9. Occurrence of selected Covid-19 drugs in surface water resources: a review of their sources, pathways, receptors, fate, ecotoxicity, and possible interactions with heavy metals in aquatic ecosystems
S R Maremane 1 , G N Belle 2 3 , P J Oberholster 2 , E O Omotola 4
Affiliations
- PMID: 39607624
- DOI: 10.1007/s10653-024-02293-9
in English, German, French, Spanish, Italian
The outbreak of the coronavirus disease 2019 (Covid-19) led to the high consumption of antibiotics such as azithromycin as well as corticosteroids such as prednisone, prednisolone, and dexamethasone used to treat the disease. Seemingly, the concentrations of these four Covid-19 drugs increased in wastewater effluents and surface water resources. This is due to the failure of traditional wastewater treatment facilities (WWTFs) to eliminate pharmaceuticals from wastewater. Therefore, the objective of the current research was to review the present state of literature on the occurrence of four Covid-19 drugs in water resources, the associated risks and toxicity, their fate, as well as the emergence of combined pollutants of Covid-19 drugs and heavy metals. From late 2019 to date, azithromycin was observed at concentrations of 935 ng/L, prednisone at 433 ng/L, prednisolone at 0.66 ng/L, and dexamethasone at 360 ng/L, respectively, in surface water resources. These concentrations had increased substantially in water resources and were all attributed to pollution by wastewater effluents and the rise in Covid-?19 infections. This phenomenon was also exacerbated by the observation of the pseudo-persistence of Covid-19 drugs, long half-life periods, as well as the excretion of Covid-19 drugs from the human body with about 30?90% of the parent drug. Nonetheless, the aquatic and human health toxicity and risks of Covid-19 drugs in water resources are unknown as the concentrations are deemed too low; thus, neglecting the possible long-term effects. Also, the accumulation of Covid-19 drugs in water resources presents the possible development of combined pollutants of Covid-19 drugs and heavy metals that are yet to be investigated. The risks and toxicity of the combined pollutants, including the fate of the Covid-19 drugs in water resources remains a research gap that undoubtably needs to be investigated.
Keywords: Combined pollutants; Covid-19 drugs; Emerging pollutants; Heavy metals; Surface water resources; Wastewater effluent.